Computing and Intelligence Department, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 138632, Singapore.
Shenzhen University, 518060, PR China.
Neural Netw. 2024 Dec;180:106654. doi: 10.1016/j.neunet.2024.106654. Epub 2024 Aug 22.
Metasurfaces have widespread applications in fifth-generation (5G) microwave communication. Among the metasurface family, free-form metasurfaces excel in achieving intricate spectral responses compared to regular-shape counterparts. However, conventional numerical methods for free-form metasurfaces are time-consuming and demand specialized expertise. Alternatively, recent studies demonstrate that deep learning has great potential to accelerate and refine metasurface designs. Here, we present XGAN, an extended generative adversarial network (GAN) with a surrogate for high-quality free-form metasurface designs. The proposed surrogate provides a physical constraint to XGAN so that XGAN can accurately generate metasurfaces monolithically from input spectral responses. In comparative experiments involving 20000 free-form metasurface designs, XGAN achieves 0.9734 average accuracy and is 500 times faster than the conventional methodology. This method facilitates the metasurface library building for specific spectral responses and can be extended to various inverse design problems, including optical metamaterials, nanophotonic devices, and drug discovery.
超表面在第五代 (5G) 微波通信中有着广泛的应用。在超表面家族中,自由曲面超表面在实现复杂的光谱响应方面优于规则形状的超表面。然而,传统的自由曲面超表面数值方法耗时且需要专业知识。相比之下,最近的研究表明,深度学习在加速和优化超表面设计方面具有巨大潜力。在这里,我们提出了 XGAN,这是一种具有替代物的扩展生成对抗网络 (GAN),用于高质量的自由曲面超表面设计。所提出的替代物为 XGAN 提供了物理约束,以便 XGAN 可以从输入的光谱响应中精确地整体生成超表面。在涉及 20000 个自由曲面超表面设计的对比实验中,XGAN 实现了 0.9734 的平均准确率,比传统方法快 500 倍。该方法促进了针对特定光谱响应的超表面库的构建,并且可以扩展到各种逆设计问题,包括光学超材料、纳米光子器件和药物发现。