Suppr超能文献

解决基于场效应晶体管的生物传感器中溶液门控的挑战。

Addressing the challenge of solution gating in biosensors based on field-effect transistors.

机构信息

School of Electrical Engineering, Ben-Gurion University of the Negev, Israel.

Department of Solar Energy and Environmental Physics, Swiss Institute for Dryland Environmental and Energy Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel.

出版信息

Biosens Bioelectron. 2024 Dec 1;265:116689. doi: 10.1016/j.bios.2024.116689. Epub 2024 Aug 24.

Abstract

Transistor-based biosensing (BioFET) is a long-enduring vision for next generation medical diagnostics. The study addresses a challenge associated with the BioFET solution gating. The standard BioFET sensing measurement involves sweeping of the solution gate (V) with a concurrent measurement of the source-drain current (I). This I-V sweep poses a great challenge, as V does not only determine I, but also determines the pH levels, ion concentrations, and electric fields at the sensing area double layer accommodating the biomolecules. Therefore, inevitably, an I-V sweep implies that the sensing area double layer is not in an electrochemical equilibrium, but rather in a continuous transient state as electrochemical potential gradients induce transient ion currents continuously affecting double layer hosting the biomolecules and the biological interactions. This challenge calls for a BioFET design which permits I sweeping from an off-state to an on-state while keeping V constant and the double layer sensing area in electrochemical equilibrium. The study explores a BioFET design addressing this challenge by decoupling the solution potential from I gating. Specific and label-free sensing of ferritin in 0.5 μL drops of 1:100 diluted plasma is pursued. We show an excellent sensing performance once the solution potential and I gating are decoupled, with a limit-of-detection of 10 fg/ml, a dynamic range of 10 orders of magnitude in ferritin concentration and excellent linearity and sensitivity. In contrast, a poor sensing performance is recorded for the conventional V sweep performed in parallel to the above. Extensive control measurements quantifying the non-specific signals are reported.

摘要

基于晶体管的生物传感 (BioFET) 是下一代医疗诊断的一个长期愿景。本研究解决了与 BioFET 溶液门控相关的挑战。标准的 BioFET 传感测量涉及溶液门 (V) 的扫动,同时测量源漏电流 (I)。这种 I-V 扫动带来了巨大的挑战,因为 V 不仅决定了 I,还决定了传感区域双层的 pH 值、离子浓度和电场,这些都容纳了生物分子。因此,不可避免地,I-V 扫动意味着传感区域双层不在电化学平衡状态,而是处于连续瞬变状态,因为电化学势梯度会诱导瞬变离子电流不断影响容纳生物分子的双层和生物相互作用。这个挑战要求 BioFET 设计允许 I 从关态扫动到开态,同时保持 V 恒定且双层传感区域处于电化学平衡状态。本研究通过将溶液势与 I 门控解耦,探索了一种应对这一挑战的 BioFET 设计。研究中对 1:100 稀释血浆的 0.5 μL 液滴中的铁蛋白进行了特异性和无标记传感。我们展示了一旦溶液势和 I 门控解耦,就可以获得出色的传感性能,其检测限为 10 fg/ml,铁蛋白浓度的动态范围为 10 个数量级,具有出色的线性度和灵敏度。相比之下,在与上述情况并行进行的传统 V 扫动中,记录到了较差的传感性能。报告了广泛的控制测量,以量化非特异性信号。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验