Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Toyota Technological Institute at Chicago, Chicago, IL 60637, USA.
Cell Genom. 2024 Sep 11;4(9):100637. doi: 10.1016/j.xgen.2024.100637. Epub 2024 Aug 28.
Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the micro-evolutionary processes of B cells during an adaptive immune response, capturing features of somatic hypermutation (SHM) and class switch recombination (CSR). Existing phylogenetic approaches for reconstructing B cell evolution have primarily focused on the SHM process alone. Here, we present tree inference of B cell clonal lineages (TRIBAL), an algorithm designed to optimally reconstruct the evolutionary history of B cell clonal lineages undergoing both SHM and CSR from scRNA-seq data. Through simulations, we demonstrate that TRIBAL produces more comprehensive and accurate B cell lineage trees compared to existing methods. Using real-world datasets, TRIBAL successfully recapitulates expected biological trends in a model affinity maturation system while reconstructing evolutionary histories with more parsimonious class switching than state-of-the-art methods. Thus, TRIBAL significantly improves B cell lineage tracing, useful for modeling vaccine responses, disease progression, and the identification of therapeutic antibodies.
单细胞 RNA 测序 (scRNA-seq) 能够全面描述适应性免疫反应过程中 B 细胞的微观进化过程,捕捉体细胞高频突变 (SHM) 和类别转换重组 (CSR) 的特征。现有的用于重建 B 细胞进化的系统发育方法主要集中在 SHM 过程上。在这里,我们提出了用于重建 B 细胞克隆谱系的树推断 (TRIBAL),这是一种算法,旨在从 scRNA-seq 数据中最佳地重建经历 SHM 和 CSR 的 B 细胞克隆谱系的进化历史。通过模拟,我们证明与现有方法相比,TRIBAL 生成的 B 细胞谱系树更全面、更准确。使用真实数据集,TRIBAL 在重建进化史时比最先进的方法具有更简约的类别转换,成功地再现了模型亲和力成熟系统中的预期生物学趋势。因此,TRIBAL 显著提高了 B 细胞谱系追踪能力,可用于模拟疫苗反应、疾病进展和鉴定治疗性抗体。