Suppr超能文献

用于单细胞转录组聚类分析的参考向量引导进化算法

Reference Vector-guided Evolutionary Algorithm for cluster analysis of single-cell transcriptomes.

作者信息

Rodríguez-Bejarano Fernando M, Vega-Rodríguez Miguel A, Santander-Jiménez Sergio

机构信息

Escuela Politécnica, Universidad de Extremadura(1), Campus Universitario s/n, 10003 Cáceres, Spain.

出版信息

Comput Methods Programs Biomed. 2025 Sep;269:108873. doi: 10.1016/j.cmpb.2025.108873. Epub 2025 Jun 6.

Abstract

BACKGROUND AND OBJECTIVE

Single-cell RNA-sequencing (scRNA-seq) has revolutionized transcriptomic studies by providing detailed insights into gene expression profiles at the single-cell level. This technology allows researchers to capture expression patterns of thousands of genes across hundreds or thousands of individual cells. Clustering is a crucial step in the analysis of scRNA-seq data, since it enables the identification of distinct cell populations based on their transcriptomic profiles and serves as a foundation for downstream analysis. Given that clustering scRNA-seq data is a challenging task that involves different conflicting objectives, our goal is to tackle it from a multi-objective optimization perspective.

METHODS

This study proposes a Reference Vector-guided Evolutionary Algorithm for Cluster Analysis of Single-cell Transcriptomes (RVEA-CAST) to address the clustering task as a multi-objective optimization problem. Our approach considers three objectives to optimize: clustering deviation, clustering compactness, and the Davies-Bouldin index. The algorithmic design of RVEA-CAST incorporates three problem-aware mutation operators specifically designed to improve each objective, which are orchestrated under a multi-objective search engine based on the use of reference vectors.

RESULTS

RVEA-CAST is evaluated on ten real scRNA-seq datasets using standard clustering evaluation metrics, such as Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI). The attained results reveal the improved performance and robustness of the proposed approach compared to other previously proposed methods. Specifically, statistically significant improvements of up to 66.7% and 261.5% were achieved for NMI and ARI, respectively. Furthermore, the analysis of differentially expressed genes in the predicted and real clusters showcased greater agreement of our solutions with actual cell populations, underscoring the biological relevance of our approach.

CONCLUSIONS

The results highlight that RVEA-CAST is an effective and versatile approach for clustering scRNA-seq data, outperforming existing methods across diverse biological scenarios in both widely used clustering evaluation metrics and biological relevance.

摘要

背景与目的

单细胞RNA测序(scRNA-seq)通过在单细胞水平上提供对基因表达谱的详细见解,彻底改变了转录组学研究。这项技术使研究人员能够捕捉数百或数千个单个细胞中数千个基因的表达模式。聚类是scRNA-seq数据分析中的关键步骤,因为它能够根据转录组谱识别不同的细胞群体,并为下游分析奠定基础。鉴于对scRNA-seq数据进行聚类是一项具有挑战性的任务,涉及不同的相互冲突的目标,我们的目标是从多目标优化的角度来解决它。

方法

本研究提出了一种用于单细胞转录组聚类分析的参考向量引导进化算法(RVEA-CAST),将聚类任务作为一个多目标优化问题来解决。我们的方法考虑优化三个目标:聚类偏差、聚类紧凑性和戴维斯-布尔丁指数。RVEA-CAST的算法设计纳入了三个专门为改善每个目标而设计的问题感知变异算子,这些算子在基于参考向量使用的多目标搜索引擎下进行编排。

结果

使用标准聚类评估指标,如归一化互信息(NMI)和调整兰德指数(ARI),在十个真实的scRNA-seq数据集上对RVEA-CAST进行了评估。获得的结果表明,与其他先前提出的方法相比,该方法具有更好的性能和鲁棒性。具体而言,NMI和ARI分别实现了高达66.7%和261.5%的统计学显著改进。此外,对预测聚类和真实聚类中差异表达基因的分析表明,我们的解决方案与实际细胞群体的一致性更高,突出了我们方法的生物学相关性。

结论

结果表明,RVEA-CAST是一种有效且通用的scRNA-seq数据聚类方法,在广泛使用的聚类评估指标和生物学相关性方面,在各种生物学场景中均优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验