Suppr超能文献

细胞外信号调节激酶(ERK)使果蝇胚胎分裂同步化。

ERK synchronizes embryonic cleavages in Drosophila.

作者信息

Yang Liu, Zhu Audrey, Aman Javed M, Denberg David, Kilwein Marcus D, Marmion Robert A, Johnson Alex N T, Veraksa Alexey, Singh Mona, Wühr Martin, Shvartsman Stanislav Y

机构信息

Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Dev Cell. 2024 Dec 2;59(23):3061-3071.e6. doi: 10.1016/j.devcel.2024.08.004. Epub 2024 Aug 28.

Abstract

Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.

摘要

细胞外信号调节激酶(ERK)信号传导控制着发育和体内平衡,并且在包括神经认知障碍和癌症在内的人类疾病中发生基因失调。尽管ERK的功能众多且不断增加,但任何特定ERK激活事件所控制的全部过程仍不为人知。在这里,我们展示了如何使用靶向扰动和ERK激活的全局读数来系统地识别ERK的功能。我们的实验模型是果蝇胚胎,迄今为止,胚胎两极的ERK信号传导仅与未来幼虫的转录模式相关。通过实时成像和磷酸化蛋白质组学相结合,我们证明了两极的ERK激活对于维持胚胎分裂的速度和同步性也至关重要。所提出的研究磷酸化网络的方法确定了一个经过充分研究的信号事件的隐藏功能,并为其他生物体的类似研究奠定了基础。

相似文献

1
ERK synchronizes embryonic cleavages in Drosophila.
Dev Cell. 2024 Dec 2;59(23):3061-3071.e6. doi: 10.1016/j.devcel.2024.08.004. Epub 2024 Aug 28.
2
The Spatiotemporal Limits of Developmental Erk Signaling.
Dev Cell. 2017 Jan 23;40(2):185-192. doi: 10.1016/j.devcel.2016.12.002.
3
The design and logic of terminal patterning in Drosophila.
Curr Top Dev Biol. 2020;137:193-217. doi: 10.1016/bs.ctdb.2019.11.008. Epub 2020 Feb 14.
4
The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis.
Science. 2009 Dec 4;326(5958):1403-5. doi: 10.1126/science.1176450.
5
Hole-in-one mutant phenotypes link EGFR/ERK signaling to epithelial tissue repair in Drosophila.
PLoS One. 2011;6(11):e28349. doi: 10.1371/journal.pone.0028349. Epub 2011 Nov 29.
6
Activation-induced substrate engagement in ERK signaling.
Mol Biol Cell. 2020 Feb 15;31(4):235-243. doi: 10.1091/mbc.E19-07-0355. Epub 2020 Jan 8.
7
Target genes of Dpp/BMP signaling pathway revealed by transcriptome profiling in the early D.melanogaster embryo.
Gene. 2016 Oct 10;591(1):191-200. doi: 10.1016/j.gene.2016.07.015. Epub 2016 Jul 7.
8
Rapid Dynamics of Signal-Dependent Transcriptional Repression by Capicua.
Dev Cell. 2020 Mar 23;52(6):794-801.e4. doi: 10.1016/j.devcel.2020.02.004. Epub 2020 Mar 5.
9
Kinetics of gene derepression by ERK signaling.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10330-5. doi: 10.1073/pnas.1303635110. Epub 2013 Jun 3.
10
Molecular mechanisms underlying cellular effects of human MEK1 mutations.
Mol Biol Cell. 2021 Apr 19;32(9):974-983. doi: 10.1091/mbc.E20-10-0625. Epub 2021 Jan 21.

引用本文的文献

1
No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo.
Curr Top Dev Biol. 2025;162:165-205. doi: 10.1016/bs.ctdb.2025.01.001. Epub 2025 Feb 18.
2
Information transmission in a cell monolayer: A numerical study.
PLoS Comput Biol. 2025 Feb 21;21(2):e1012846. doi: 10.1371/journal.pcbi.1012846. eCollection 2025 Feb.

本文引用的文献

1
Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer.
Science. 2024 Jun 7;384(6700):eadk0850. doi: 10.1126/science.adk0850.
2
An atlas of substrate specificities for the human serine/threonine kinome.
Nature. 2023 Jan;613(7945):759-766. doi: 10.1038/s41586-022-05575-3. Epub 2023 Jan 11.
3
Cullin-5 mutants reveal collective sensing of the nucleocytoplasmic ratio in Drosophila embryogenesis.
Curr Biol. 2022 May 9;32(9):2084-2092.e4. doi: 10.1016/j.cub.2022.03.007. Epub 2022 Mar 24.
4
Waves in Embryonic Development.
Annu Rev Biophys. 2022 May 9;51:327-353. doi: 10.1146/annurev-biophys-111521-102500. Epub 2022 Feb 4.
5
Capicua is a fast-acting transcriptional brake.
Curr Biol. 2021 Aug 23;31(16):3703. doi: 10.1016/j.cub.2021.07.045.
6
Cell cycle control during early embryogenesis.
Development. 2021 Jul 1;148(13). doi: 10.1242/dev.193128. Epub 2021 Jun 24.
7
TMTpro Complementary Ion Quantification Increases Plexing and Sensitivity for Accurate Multiplexed Proteomics at the MS2 Level.
J Proteome Res. 2021 Jun 4;20(6):3043-3052. doi: 10.1021/acs.jproteome.0c00813. Epub 2021 Apr 30.
8
Excess histone H3 is a competitive Chk1 inhibitor that controls cell-cycle remodeling in the early Drosophila embryo.
Curr Biol. 2021 Jun 21;31(12):2633-2642.e6. doi: 10.1016/j.cub.2021.03.035. Epub 2021 Apr 12.
9
Coupled oscillators coordinate collective germline growth.
Dev Cell. 2021 Mar 22;56(6):860-870.e8. doi: 10.1016/j.devcel.2021.02.015. Epub 2021 Mar 8.
10
Optogenetic Rescue of a Patterning Mutant.
Curr Biol. 2020 Sep 7;30(17):3414-3424.e3. doi: 10.1016/j.cub.2020.06.059. Epub 2020 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验