School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China.
Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China.
Acta Biomater. 2024 Oct 1;187:366-380. doi: 10.1016/j.actbio.2024.08.036. Epub 2024 Aug 30.
Ferroptosis is greatly restricted by low reactive oxygen species (ROS) generation efficiency, and the inherent self-protection mechanism originating in heat shock proteins (HSPs) seriously impedes the efficiency of photothermal therapy (PTT). Herein, we designed an intelligent strategy utilizing cascade catalytic nanoassemblies (Au@COF@MnO) with triple-enzyme activity for amplifying ferroptosis therapy and improving the efficiency of PTT in tumor. Gold nanozyme was encapsulated within a hollow manganese dioxide (MnO) shell with the help of covalent organic frameworks (COFs). The nanoassemblies possess the ability of photothermal conversion. Mechanism studies suggested that glutathione (GSH) depletion by Au@COF@MnO leads to the inactivation of glutathione peroxidase 4 (GPX4). This effect synergized with Mn-mediated reactive oxygen species (ROS) generation to enhance the accumulation of lipid peroxide (LPO), thereby inducing high-efficiency ferroptosis. Notably, gold nanozyme facilitated the conversion of glucose into gluconic acid and hydrogen peroxide (HO). This process augmented the endogenous HO levels necessary for Fenton chemistry, which could effectively promote the generation of ROS. Simultaneously, glucose depletion downregulated the expression of HSPs induced by hyperthermia, consequently reducing cellular heat resistance for enhancing PTT. Therefore, the cascade catalytic nanoassembly not only exhibits high tumor inhibition and admirable biosafety, but also possesses trimodal imaging performance for imaging-guided tumor therapy in vivo, holding great potential for clinical application. STATEMENT OF SIGNIFICANCE: This study engineered multi-responsive cascade catalytic nanoassembly (Au@COF@MnO) with triple enzymatic functions for amplifying ferroptosis therapy and improving the efficiency of PTT in tumor. The nanoassembly exhibited multi-responsive release and great photothermal conversion performance. Glucose consumption-evoked starvation downregulated the hyperthermia-induced expression of HSPs in tumor cells, thereby improving the efficacy of PTT. Mechanism studies suggested that GSH depletion by Au@COF@MnO lead to the inactivation of GPX4, which synergized with Mn-mediated ROS generation to bolster the accumulation of LPO, thereby inducing high-efficiency ferroptosis. Moreover, the nanoassembly demonstrated trimodal (PT, PA, and MR) imaging in vivo, enabling the visualization of the tumor treatment with nanoassembly. Such nanoassembly exhibited high tumor inhibition and admirable biosafety in tumor therapy in vivo, holding a great potential for clinical application.
铁死亡受到活性氧(ROS)生成效率低的极大限制,而源自热休克蛋白(HSPs)的固有自我保护机制严重阻碍了光热治疗(PTT)的效率。在这里,我们设计了一种利用具有三重酶活性的级联催化纳米组装体(Au@COF@MnO)来放大铁死亡治疗并提高肿瘤中 PTT 效率的智能策略。金纳米酶在共价有机框架(COFs)的帮助下被封装在中空的二氧化锰(MnO)壳中。纳米组装体具有光热转换能力。机制研究表明,Au@COF@MnO 导致谷胱甘肽(GSH)耗竭,从而使谷胱甘肽过氧化物酶 4(GPX4)失活。这种效应与 Mn 介导的活性氧(ROS)生成协同作用,增强脂质过氧化物(LPO)的积累,从而诱导高效铁死亡。值得注意的是,金纳米酶促进了葡萄糖转化为葡萄糖酸和过氧化氢(HO)。这一过程增加了芬顿化学所需的内源性 HO 水平,从而有效地促进了 ROS 的生成。同时,葡萄糖耗竭下调了由高热诱导的 HSPs 的表达,从而降低了细胞对 PTT 的耐热性。因此,级联催化纳米组装体不仅表现出高肿瘤抑制和令人钦佩的生物安全性,而且还具有用于体内成像引导肿瘤治疗的三模态成像性能,具有很大的临床应用潜力。
意义声明:本研究设计了具有三重酶功能的多响应级联催化纳米组装体(Au@COF@MnO),用于放大铁死亡治疗并提高肿瘤中 PTT 的效率。该纳米组装体表现出多响应性释放和出色的光热转换性能。葡萄糖消耗引发的饥饿下调了肿瘤细胞中由高热诱导的 HSPs 的表达,从而提高了 PTT 的效率。机制研究表明,Au@COF@MnO 导致 GSH 耗竭,从而使 GPX4 失活,这与 Mn 介导的 ROS 生成协同作用,增强了 LPO 的积累,从而诱导高效铁死亡。此外,该纳米组装体在体内表现出三模态(PT、PA 和 MR)成像,能够可视化纳米组装体的肿瘤治疗。该纳米组装体在体内肿瘤治疗中表现出高肿瘤抑制和良好的生物安全性,具有很大的临床应用潜力。
Biosens Bioelectron. 2025-6-15
J Colloid Interface Sci. 2024-12-15
Eur J Pharm Biopharm. 2024-8