State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
Biotechnol Adv. 2024 Nov;76:108436. doi: 10.1016/j.biotechadv.2024.108436. Epub 2024 Aug 28.
Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.
基于三角形单元的 DNA 纳米结构的研究由于其生物相容性、可编程性和稳定性最近取得了快速进展。在这些结构中,基于三角形单元的 DNA 纳米结构(通常是多臂 DNA 瓦片)因其独特的结构刚性、空间灵活性和细胞通透性而得到了广泛应用。基于三角形单元的 DNA 纳米结构是使用互补碱基配对原理从多个单链 DNA 折叠而成的。其形状和大小可以使用预设的支架链、分段碱基互补区域和序列长度来确定。所得 DNA 纳米结构保留所需的序列长度作为与其他分子结合的位点,并在分子识别、空间定向和目标获取方面获得满意的结果。因此,对基于三角形单元的 DNA 纳米结构的广泛研究表明,它们可以用作生物传感领域的强大工具,以提高特异性、灵敏度和准确性。在过去的几十年中,已经建立了各种设计策略和组装技术,以提高基于三角形单元的 DNA 纳米结构在生物传感中的稳定性、复杂性、功能性和实际应用。在这篇综述中,我们介绍了典型的基于三角形单元的 DNA 纳米结构的结构设计策略和原则,包括三角形、四面体、星形和网状 DNA。然后,我们总结了基于三角形单元的 DNA 纳米结构的功能特性及其在生物传感中的应用。最后,我们批判性地讨论了现有的挑战和未来的趋势。
Chem Soc Rev. 2016-5-3
Chempluschem. 2019-4-29
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-4-6
Acc Chem Res. 2014-4-10
J Am Chem Soc. 2018-12-4
Curr Top Med Chem. 2022