Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Nov;10(6):e1518. doi: 10.1002/wnan.1518. Epub 2018 Apr 6.
The evergrowing need to understand and engineer biological and biochemical mechanisms has led to the emergence of the field of nanobiosensing. Structural DNA nanotechnology, encompassing methods such as DNA origami and single-stranded tiles, involves the base pairing-driven knitting of DNA into discrete one-, two-, and three-dimensional shapes at nanoscale. Such nanostructures enable a versatile design and fabrication of nanobiosensors. These systems benefit from DNA's programmability, inherent biocompatibility, and the ability to incorporate and organize functional materials such as proteins and metallic nanoparticles. In this review, we present a mix-and-match taxonomy and approach to designing nanobiosensors in which the choices of bioanalyte and transduction mechanism are fully independent of each other. We also highlight opportunities for greater complexity and programmability of these systems that are built using structural DNA nanotechnology. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > Biosensing Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
对理解和设计生物及生化机制的需求不断增长,促使纳米生物传感领域应运而生。结构 DNA 纳米技术包括 DNA 折纸术和单链瓦片等方法,涉及在纳米尺度上将 DNA 通过碱基配对驱动的方式编织成离散的一维、二维和三维形状。这些纳米结构使纳米生物传感器具有多功能的设计和制造能力。这些系统得益于 DNA 的可编程性、固有生物相容性以及能够整合和组织功能材料(如蛋白质和金属纳米粒子)的能力。在这篇综述中,我们提出了一种混合和匹配的分类法和方法来设计纳米生物传感器,其中生物分析物和转导机制的选择是完全独立的。我们还强调了使用结构 DNA 纳米技术构建的这些系统具有更高复杂性和可编程性的机会。本文属于以下分类:可植入材料和外科技术 > 纳米材料和植入物 诊断工具 > 生物传感 基于生物启发的纳米材料 > 基于核酸的结构 纳米技术在生物学中的应用 > 生物学中的纳米级系统。