Suppr超能文献

人工智能在视网膜疾病中的应用。

Artificial intelligence for retinal diseases.

机构信息

University of Illinois at Chicago, College of Medicine, Department of Ophthalmology and Visual Sciences, Chicago, IL, United States.

Department of Ophthalmology at Case Western Reserve University, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Cole Eye Institute, United States.

出版信息

Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100096. doi: 10.1016/j.apjo.2024.100096. Epub 2024 Aug 27.

Abstract

PURPOSE

To discuss the worldwide applications and potential impact of artificial intelligence (AI) for the diagnosis, management and analysis of treatment outcomes of common retinal diseases.

METHODS

We performed an online literature review, using PubMed Central (PMC), of AI applications to evaluate and manage retinal diseases. Search terms included AI for screening, diagnosis, monitoring, management, and treatment outcomes for age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal surgery, retinal vascular disease, retinopathy of prematurity (ROP) and sickle cell retinopathy (SCR). Additional search terms included AI and color fundus photographs, optical coherence tomography (OCT), and OCT angiography (OCTA). We included original research articles and review articles.

RESULTS

Research studies have investigated and shown the utility of AI for screening for diseases such as DR, AMD, ROP, and SCR. Research studies using validated and labeled datasets confirmed AI algorithms could predict disease progression and response to treatment. Studies showed AI facilitated rapid and quantitative interpretation of retinal biomarkers seen on OCT and OCTA imaging. Research articles suggest AI may be useful for planning and performing robotic surgery. Studies suggest AI holds the potential to help lessen the impact of socioeconomic disparities on the outcomes of retinal diseases.

CONCLUSIONS

AI applications for retinal diseases can assist the clinician, not only by disease screening and monitoring for disease recurrence but also in quantitative analysis of treatment outcomes and prediction of treatment response. The public health impact on the prevention of blindness from DR, AMD, and other retinal vascular diseases remains to be determined.

摘要

目的

讨论人工智能(AI)在常见视网膜疾病的诊断、管理和治疗结果分析方面的全球应用和潜在影响。

方法

我们通过 PubMed Central(PMC)进行了在线文献回顾,以评估和管理视网膜疾病的 AI 应用。搜索词包括用于筛查、诊断、监测、管理和治疗年龄相关性黄斑变性(AMD)、糖尿病视网膜病变(DR)、视网膜手术、视网膜血管疾病、早产儿视网膜病变(ROP)和镰状细胞视网膜病变(SCR)的 AI。其他搜索词包括 AI 和眼底彩色照片、光学相干断层扫描(OCT)和 OCT 血管造影(OCTA)。我们包括了原始研究文章和综述文章。

结果

研究调查并展示了 AI 在 DR、AMD、ROP 和 SCR 等疾病筛查方面的效用。使用经过验证和标记数据集的研究证实,AI 算法可以预测疾病进展和对治疗的反应。研究表明,AI 有助于快速和定量解释 OCT 和 OCTA 成像上的视网膜生物标志物。研究文章表明,AI 可能有助于规划和进行机器人手术。研究表明,AI 有可能帮助减轻社会经济差异对视网膜疾病治疗结果的影响。

结论

视网膜疾病的 AI 应用不仅可以通过疾病筛查和监测疾病复发来帮助临床医生,还可以对治疗结果进行定量分析和预测治疗反应。DR、AMD 和其他视网膜血管疾病预防失明的公共卫生影响仍有待确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验