Suppr超能文献

人工智能(AI)在视网膜和青光眼疾病中的未来作用。

The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases.

机构信息

University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy.

Vita-Salute San Raffaele University, Milan, Italy.

出版信息

J Optom. 2022;15 Suppl 1(Suppl 1):S50-S57. doi: 10.1016/j.optom.2022.08.001. Epub 2022 Oct 8.

Abstract

In recent years, the role of artificial intelligence (AI) and deep learning (DL) models is attracting increasing global interest in the field of ophthalmology. DL models are considered the current state-of-art among the AI technologies. In fact, DL systems have the capability to recognize, quantify and describe pathological clinical features. Their role is currently being investigated for the early diagnosis and management of several retinal diseases and glaucoma. The application of DL models to fundus photographs, visual fields and optical coherence tomography (OCT) imaging has provided promising results in the early detection of diabetic retinopathy (DR), wet age-related macular degeneration (w-AMD), retinopathy of prematurity (ROP) and glaucoma. In this review we analyze the current evidence of AI applied to these ocular diseases, as well as discuss the possible future developments and potential clinical implications, without neglecting the present limitations and challenges in order to adopt AI and DL models as powerful tools in the everyday routine clinical practice.

摘要

近年来,人工智能 (AI) 和深度学习 (DL) 模型的作用在眼科领域引起了全球越来越多的关注。DL 模型被认为是 AI 技术的当前最先进技术。事实上,DL 系统具有识别、量化和描述病理性临床特征的能力。目前正在研究它们在几种视网膜疾病和青光眼的早期诊断和管理中的作用。将 DL 模型应用于眼底照片、视野和光学相干断层扫描 (OCT) 成像,为糖尿病视网膜病变 (DR)、湿性年龄相关性黄斑变性 (w-AMD)、早产儿视网膜病变 (ROP) 和青光眼的早期检测提供了有希望的结果。在这篇综述中,我们分析了 AI 在这些眼部疾病中的应用的现有证据,并讨论了可能的未来发展和潜在的临床意义,同时也没有忽视当前的局限性和挑战,以便将 AI 和 DL 模型作为强大的工具在日常临床实践中应用。

相似文献

3
Artificial intelligence in ophthalmology.人工智能在眼科学中的应用。
Rom J Ophthalmol. 2023 Jul-Sep;67(3):207-213. doi: 10.22336/rjo.2023.37.
4
Artificial intelligence and deep learning in ophthalmology.人工智能和深度学习在眼科学中的应用。
Br J Ophthalmol. 2019 Feb;103(2):167-175. doi: 10.1136/bjophthalmol-2018-313173. Epub 2018 Oct 25.
5
Deep learning in ophthalmology: The technical and clinical considerations.深度学习在眼科学中的技术和临床考虑。
Prog Retin Eye Res. 2019 Sep;72:100759. doi: 10.1016/j.preteyeres.2019.04.003. Epub 2019 Apr 29.
6
Artificial Intelligence in Ophthalmology - Status Quo and Future Perspectives.眼科中的人工智能——现状与未来展望
Semin Ophthalmol. 2023 Apr;38(3):226-237. doi: 10.1080/08820538.2022.2139625. Epub 2022 Nov 10.
9
Artificial intelligence: the unstoppable revolution in ophthalmology.人工智能:眼科领域的不可阻挡的革命。
Surv Ophthalmol. 2022 Jan-Feb;67(1):252-270. doi: 10.1016/j.survophthal.2021.03.003. Epub 2021 Mar 16.

引用本文的文献

3
Artificial intelligence and glaucoma: a lucid and comprehensive review.人工智能与青光眼:一篇清晰且全面的综述
Front Med (Lausanne). 2024 Dec 16;11:1423813. doi: 10.3389/fmed.2024.1423813. eCollection 2024.
6
Considerations of COVID-19 in Ophthalmology.眼科领域中对新型冠状病毒肺炎的考量
Microorganisms. 2023 Aug 31;11(9):2220. doi: 10.3390/microorganisms11092220.

本文引用的文献

5
Retinal age gap as a predictive biomarker for mortality risk.视网膜年龄差距作为死亡风险的预测生物标志物。
Br J Ophthalmol. 2023 Apr;107(4):547-554. doi: 10.1136/bjophthalmol-2021-319807. Epub 2022 Jan 18.
8
Updates in deep learning research in ophthalmology.眼科深度学习研究的新进展。
Clin Sci (Lond). 2021 Oct 29;135(20):2357-2376. doi: 10.1042/CS20210207.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验