Suppr超能文献

人工智能结合视网膜成像在糖尿病相关并发症筛查中的应用:系统评价

Use of artificial intelligence with retinal imaging in screening for diabetes-associated complications: systematic review.

作者信息

Yang Qianhui, Bee Yong Mong, Lim Ciwei Cynthia, Sabanayagam Charumathi, Yim-Lui Cheung Carol, Wong Tien Yin, Ting Daniel S W, Lim Lee-Ling, Li HuaTing, He Mingguang, Lee Aaron Y, Shaw A Jonathan, Keong Yeo Khung, Wei Tan Gavin Siew

机构信息

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, China.

Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore.

出版信息

EClinicalMedicine. 2025 Feb 18;81:103089. doi: 10.1016/j.eclinm.2025.103089. eCollection 2025 Mar.

Abstract

BACKGROUND

Artificial Intelligence (AI) has been used to automate detection of retinal diseases from retinal images with great success, in particular for screening for diabetic retinopathy, a major complication of diabetes. Since persons with diabetes routinely receive retinal imaging to evaluate their diabetic retinopathy status, AI-based retinal imaging may have potential to be used as an opportunistic comprehensive screening for multiple systemic micro- and macro-vascular complications of diabetes.

METHODS

We conducted a qualitative systematic review on published literature using AI on retina images to detect systemic diabetes complications. We searched three main databases: PubMed, Google Scholar, and Web of Science (January 1, 2000, to October 1, 2024). Research that used AI to evaluate the associations between retinal images and diabetes-associated complications, or research involving diabetes patients with retinal imaging and AI systems were included. Our primary focus was on articles related to AI, retinal images, and diabetes-associated complications. We evaluated each study for the robustness of the studies by development of the AI algorithm, size and quality of the training dataset, internal validation and external testing, and the performance. Quality assessments were employed to ensure the inclusion of high-quality studies, and data extraction was conducted systematically to gather pertinent information for analysis. This study has been registered on PROSPERO under the registration ID CRD42023493512.

FINDINGS

From a total of 337 abstracts, 38 studies were included. These studies covered a range of topics related to prediction of diabetes from pre-diabetes or non-diabeticindividuals (n = 4), diabetes related systemic risk factors (n = 10), detection of microvascular complications (n = 8) and detection of macrovascular complications (n = 17). Most studies (n = 32) utilized color fundus photographs (CFP) as retinal image modality, while others employed optical coherence tomography (OCT) (n = 6). The performance of the AI systems varied, with an AUC ranging from 0.676 to 0.971 in prediction or identification of different complications. Study designs included cross-sectional and cohort studies with sample sizes ranging from 100 to over 100,000 participants. Risk of bias was evaluated by using the Newcastle-Ottawa Scale and AXIS, with most studies scoring as low to moderate risk.

INTERPRETATION

Our review highlights the potential for the use of AI algorithms applied to retina images, particularly CFP, to screen, predict, or diagnose the various microvascular and macrovascular complications of diabetes. However, we identified few studies with longitudinal data and a paucity of randomized control trials, reflecting a gap between the development of AI algorithms and real-world implementation and translational studies.

FUNDING

Dr. Gavin Siew Wei TAN is supported by: 1. DYNAMO: Diabetes studY on Nephropathy And other Microvascular cOmplications II supported by National Medical Research Council (MOH-001327-03): data collection, analysis, trial design 2. Prognositc significance of novel multimodal imaging markers for diabetic retinopathy: towards improving the staging for diabetic retinopathy supported by NMRC Clinician Scientist Award (CSA)-Investigator (INV) (MOH-001047-00).

摘要

背景

人工智能(AI)已成功用于从视网膜图像中自动检测视网膜疾病,尤其是用于筛查糖尿病的主要并发症糖尿病视网膜病变。由于糖尿病患者通常会接受视网膜成像以评估其糖尿病视网膜病变状况,基于AI的视网膜成像可能有潜力用作对糖尿病多种系统性微血管和大血管并发症的机会性综合筛查。

方法

我们对已发表的使用AI对视网膜图像进行系统性糖尿病并发症检测的文献进行了定性系统评价。我们检索了三个主要数据库:PubMed、谷歌学术和科学网(2000年1月1日至2024年10月1日)。纳入使用AI评估视网膜图像与糖尿病相关并发症之间关联的研究,或涉及糖尿病患者视网膜成像和AI系统的研究。我们主要关注与AI、视网膜图像和糖尿病相关并发症相关的文章。我们通过AI算法的开发、训练数据集的大小和质量、内部验证和外部测试以及性能来评估每项研究的稳健性。采用质量评估以确保纳入高质量研究,并系统地进行数据提取以收集相关信息进行分析。本研究已在PROSPERO上注册,注册号为CRD42023493512。

结果

从总共337篇摘要中,纳入了38项研究。这些研究涵盖了一系列主题,包括从糖尿病前期或非糖尿病个体预测糖尿病(n = 4)、糖尿病相关的系统性风险因素(n = 10)、微血管并发症的检测(n = 8)和大血管并发症的检测(n = 17)。大多数研究(n = 32)使用彩色眼底照片(CFP)作为视网膜图像模态,而其他研究采用光学相干断层扫描(OCT)(n = 6)。AI系统的性能各不相同,在预测或识别不同并发症时AUC范围为0.676至0.971。研究设计包括横断面研究和队列研究,样本量从100至超过100,000名参与者不等。使用纽卡斯尔-渥太华量表和AXIS评估偏倚风险,大多数研究的风险评分为低至中度。

解读

我们的综述强调了将AI算法应用于视网膜图像,特别是CFP,以筛查、预测或诊断糖尿病各种微血管和大血管并发症的潜力。然而,我们发现很少有纵向数据的研究,且缺乏随机对照试验,这反映了AI算法开发与实际应用及转化研究之间的差距。

资金支持

Gavin Siew Wei TAN博士得到以下支持:1. DYNAMO:糖尿病肾病及其他微血管并发症研究II,由国家医学研究理事会资助(MOH - 001327 - 03):数据收集、分析、试验设计;2. 新型多模态成像标志物对糖尿病视网膜病变的预后意义:旨在改善糖尿病视网膜病变分期,由NMRC临床科学家奖(CSA)-研究者(INV)资助(MOH - 001047 - 00)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/989e/11883405/a7950c0d534a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验