Kogut-Günthel Małgorzata M, Zara Zeenat, Nicoli Alessandro, Steuer Alexandra, Lopez-Balastegui Marta, Selent Jana, Karanth Sanjai, Koehler Melanie, Ciancetta Antonella, Abiko Layara Akemi, Hagn Franz, Di Pizio Antonella
Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
Faculty of Science, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic.
Br J Pharmacol. 2024 Aug 29. doi: 10.1111/bph.17314.
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.
G蛋白偶联受体(GPCRs)通过将细胞外环境的信号传导至细胞内部,在细胞功能中发挥着至关重要的作用。它们介导各种刺激的作用,包括激素、神经递质、离子、光子、食物味觉剂和气味剂,并且是著名的药物靶点。包括X射线晶体学和冷冻电子显微镜(cryo-EM)在内的结构生物学技术的进步,推动了越来越多GPCR结构的解析。这些结构揭示了新的特征,为受体激活、二聚化和寡聚化、正构调节和变构调节之间的二分法以及信号转导背后的复杂相互作用提供了线索,从而深入了解了多种配体结合模式和信号通路。然而,GPCR库的很大一部分及其激活状态在结构上仍未被探索。未来的工作应优先捕捉GPCR在多个维度上的完整结构多样性。要做到这一点,将结构生物学与生物物理和计算技术相结合至关重要。在这篇综述中,我们描述了核磁共振(NMR)在研究GPCR可塑性和构象动力学方面的进展、原子力显微镜(AFM)在探索GPCR的时空动力学和动力学方面的进展,以及人工智能在蛋白质结构预测方面的最新突破,以表征整个GPCR组的结构。总之,这篇综述中关于GPCR结构生物学的历程说明了我们在解码这些重要蛋白质的结构和功能方面已经取得了多大的进展。展望未来,整合前沿生物物理学和计算工具为探索GPCR结构格局提供了一条途径,最终推动基于GPCR的应用发展。