Suppr超能文献

通过感官、受体和序列数据探索苦味肽的分子空间

Exploring the Molecular Space of Bitter Peptides via Sensory, Receptor, and Sequence Data.

作者信息

Steuer Alexandra, Eckrich Laura Sophie, Schaefer Silvia, Mittermeier-Kleßinger Verena Karolin, Otterbach Alexander, Behrens Maik, Dawid Corinna, Di Pizio Antonella

机构信息

TUM Graduate School, TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising 85354, Germany.

Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany.

出版信息

J Agric Food Chem. 2025 Aug 6;73(31):19642-19651. doi: 10.1021/acs.jafc.5c01195. Epub 2025 Jul 23.

Abstract

This study explores the chemical space of bitter peptides through a curated data set, named Bitter Peptide Space (BPS)-1000, which includes experimentally validated bitter and nonbitter peptides. The data set integrates sensory data, bitter taste thresholds (BTTs), and bitter taste receptor (TAS2R) activity when available. The inclusion of modified peptides further expands the data set's diversity. The HELM (Hierarchical Editing Language for Macromolecules) and BILN (Boehringer Ingelheim Line Notation) notations have been generated to provide a unique representation for both canonical and modified peptides. Through sequence-based and structure-based analyses, the study highlights the role of hydrophobicity, molecular size, and specific amino acid composition in the bitter and nonbitter sets in canonical and modified peptides, suggesting differences that could contribute to bitterness and enhancing the understanding of bitter peptide characteristics.

摘要

本研究通过一个精心策划的数据集——名为苦味肽空间(BPS)-1000,探索苦味肽的化学空间,该数据集包括经实验验证的苦味和非苦味肽。该数据集整合了感官数据、苦味阈值(BTT)以及可用时的苦味受体(TAS2R)活性。修饰肽的纳入进一步扩大了数据集的多样性。已经生成了HELM(大分子分层编辑语言)和BILN(勃林格殷格翰线性表示法)表示法,为标准肽和修饰肽提供独特的表示。通过基于序列和基于结构的分析,该研究突出了疏水性、分子大小和特定氨基酸组成在标准肽和修饰肽的苦味和非苦味组中的作用,表明这些差异可能导致苦味,并增强了对苦味肽特征的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验