Liang Hongbo, Chen Jing, Zhu Wenjing, Ma Fengqiang, Li Na, Gu Hao, Xia Junmin, Lin Yuexin, Yang Wenhan, Zhang Sen, Zhang Yueshuai, Han Bingyu, Yang Shengchun, Ding Shujiang, Liang Chao
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Shenzhen, 440300, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413105. doi: 10.1002/anie.202413105. Epub 2024 Oct 24.
Additive engineering plays a pivotal role in achieving high-quality light-absorbing layers for high-performance and stable perovskite solar cells (PSCs). Various functional groups within the additives exert distinct regulatory effects on the perovskite layer. However, few additive molecules can synergistically fulfill the dual functions of regulating crystallization and passivating defects. Here, we custom-synthesized 2-ureido-4-pyrimidone (UPy) organic small molecules with diverse functional groups as additives to modulate crystallization and defects in perovskite films via the Michael addition reaction. Theoretical and experimental investigations demonstrate that the -OH groups in UPy exhibit significant effects in fixing uncoordinated Pb ions, passivation of lead-iodide antisite defects, alleviating hysteresis, and reducing non-radiative recombination. Furthermore, the enhanced C=O and -NH motifs interact with the A-site cation via hydrogen bonding, which relieves residual strain and adjusts crystal orientation. This strategy effectively controls perovskite crystallization and passivates defects, ultimately enhancing the quality of perovskite films. Consequently, the open-circuit voltage of the UPy-based p-i-n PSCs reaches 1.20 V, and the fill factor surpasses 84 %. The champion device delivers a power conversion efficiency of 25.75 %. Remarkably, the unencapsulated device maintained 96.9 % and 94.5 % of its initial efficiency following 3,360 hours of dark storage and 1,866 hours of 1-sun illumination, respectively.
添加剂工程在实现用于高性能和稳定的钙钛矿太阳能电池(PSC)的高质量光吸收层方面发挥着关键作用。添加剂中的各种官能团对钙钛矿层具有不同的调节作用。然而,很少有添加剂分子能够协同实现调节结晶和钝化缺陷的双重功能。在此,我们定制合成了具有不同官能团的2-脲基-4-嘧啶酮(UPy)有机小分子作为添加剂,通过迈克尔加成反应来调节钙钛矿薄膜的结晶和缺陷。理论和实验研究表明,UPy中的-OH基团在固定未配位的Pb离子、钝化碘化铅反位缺陷、减轻滞后现象以及减少非辐射复合方面表现出显著效果。此外,增强的C=O和-NH基序通过氢键与A位阳离子相互作用,从而缓解残余应变并调整晶体取向。该策略有效地控制了钙钛矿的结晶并钝化了缺陷,最终提高了钙钛矿薄膜的质量。因此,基于UPy的p-i-n PSC的开路电压达到1.20 V,填充因子超过84%。最佳器件的功率转换效率为25.75%。值得注意的是,未封装的器件在黑暗储存3360小时和1个太阳光照1866小时后,分别保持了其初始效率的96.9%和94.5%。