Suppr超能文献

用于效率为26.47%的FACsPbI钙钛矿太阳能电池的高极性界面材料的精心设计

Meticulous Design of High-Polarity Interface Material for FACsPbI Perovskite Solar Cells with Efficiency of 26.47.

作者信息

Li Yongzhe, Dong Linlin, Cai Yan, Li Yong, Xu Dongfang, Lei Hongjie, Li Nan, Fan Zihao, Tan Jieke, Sun Rui, Wang Borui, Gong Jinyun, Lin Zilu, Guo Kunpeng, He Xuexia, Liu Zhike

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.

Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202504902. doi: 10.1002/anie.202504902. Epub 2025 May 2.

Abstract

Designing new interface materials with the multifunctions of upper film crystallization control, interfacial defects passivation, and interfacial energy level regulation is crucial for developing efficient and stable perovskite solar cells (PSCs). Herein, a high polarity interfacial material, 2-cyano-N,N,N-trimethylammonium bromide (CNCB), was synthesized to engineer the buried interface between SnO and perovskite of the PSCs. Comprehensive theoretical and experimental investigations demonstrate that CNCB interacts with perovskite precursors (PbI and FAI) to regulate crystallization kinetics, yielding perovskite films with preferred orientation and reduced defects. Simultaneously, CNCB chemically interacts with both SnO and perovskite surfaces, effectively passivating oxygen vacancies in SnO and undercoordinated Pb⁺ defects at the perovskite buried surface. Furthermore, the high dipole moment of CNCB induces beneficial interfacial polarization, optimizing energy level alignment and suppressing non-radiative recombination. The CNCB-modified FACsPbI PSCs achieve a champion power conversion efficiency (PCE) of 26.47% with exceptional operational stability, retaining 87.14% of their initial efficiency after 1000 h of continuous 1-sun illumination. This work establishes a molecular design paradigm for multifunctional interfacial materials in perovskite optoelectronics, highlighting the synergistic roles of crystallization control, defect passivation, and dipole engineering in high-performance devices.

摘要

设计具有上层薄膜结晶控制、界面缺陷钝化和界面能级调节等多功能的新型界面材料对于开发高效稳定的钙钛矿太阳能电池(PSC)至关重要。在此,合成了一种高极性界面材料2-氰基-N,N,N-三甲基溴化铵(CNCB),用于优化PSC中SnO与钙钛矿之间的掩埋界面。全面的理论和实验研究表明,CNCB与钙钛矿前驱体(PbI和FAI)相互作用以调节结晶动力学,从而得到具有择优取向和减少缺陷的钙钛矿薄膜。同时,CNCB与SnO和钙钛矿表面发生化学相互作用,有效钝化SnO中的氧空位以及钙钛矿掩埋表面处配位不足的Pb⁺缺陷。此外,CNCB的高偶极矩引发有益的界面极化,优化能级排列并抑制非辐射复合。经CNCB修饰的FACsPbI PSC实现了26.47%的最高功率转换效率(PCE),并具有出色的运行稳定性,在1个太阳连续光照1000小时后仍保留其初始效率的87.14%。这项工作为钙钛矿光电器件中的多功能界面材料建立了一种分子设计范例,突出了结晶控制、缺陷钝化和偶极工程在高性能器件中的协同作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验