Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX, Utrecht, The Netherlands.
Nat Commun. 2024 Aug 29;15(1):7484. doi: 10.1038/s41467-024-51676-0.
Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43-ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy.
ATAXIN-2(ATXN2)中的中等长度重复扩展是肌萎缩侧索硬化症(ALS)最强的遗传风险因素。在分子水平上,ATXN2 中等扩展增强了 TDP-43 的毒性和病理学。然而,这是否会在细胞和功能水平引发 ALS 发病机制尚不清楚。在这里,我们结合患者来源的和小鼠模型来剖析 ALS 背景下 ATXN2 中等扩展的影响。与健康对照组和其他家族性 ALS 突变体相比,来自 ATXN2-ALS 患者的 iPSC 衍生运动神经元显示出应激颗粒、轴突损伤和异常电生理特性的改变。在 TDP-43-ALS 小鼠中,ATXN2-Q33 导致运动功能降低、NMJ 改变、神经元退化和体外应激颗粒动力学改变。此外,在小鼠和人类神经元及类器官模型中,在细胞水平上检测到并证实了与线粒体功能和炎症反应相关的基因表达变化。总之,这些结果定义了 ATXN2-ALS 的致病缺陷,并为未来研究 ATXN2 依赖性发病机制和治疗提供了框架。