Barker Kit, McKinney Sarah L, Artal Raül, Jiménez Ricardo, Tapia-Ruiz Nuria, Skinner Stephen J, Aguadero Ainara, Seymour Ieuan D
Department of Materials, Imperial College London, London, UK.
Department of Chemistry, Imperial College London, London, UK.
Nat Commun. 2024 Aug 29;15(1):7501. doi: 10.1038/s41467-024-51710-1.
Halide solid electrolytes do not currently display ionic conductivities suitable for high-power all-solid-state batteries. We explore the model system AZrCl (A = Li, Na, Cu, Ag) to understand the fundamental role that A-site chemistry plays on fast ion transport. Having synthesised the previously unknown AgZrCl we reveal high room temperature ionic conductivities in CuZrCl and AgZrCl of 1 × 10 and 4 × 10 S cm, respectively. We introduce the concept that there are inherent limits to ionic conductivity in solids, where the energy and number of transition states play pivotal roles. Transport that involves multiple coordination changes along the pathway suffer from an intrinsic minimum activation energy. At certain lattice sizes, the energies of different coordinations can become equivalent, leading to lower barriers when a pathway involves a single coordination change. Our models provide a deeper understanding into the optimisation and design criteria for halide superionic conductors.
卤化物固体电解质目前尚未表现出适用于高功率全固态电池的离子电导率。我们探索了模型体系AZrCl(A = Li、Na、Cu、Ag),以了解A位化学在快速离子传输中所起的基本作用。在合成了此前未知的AgZrCl之后,我们发现CuZrCl和AgZrCl在室温下的离子电导率分别为1×10⁻⁴和4×10⁻⁴ S/cm。我们提出了一个概念,即固体中的离子电导率存在内在限制,其中过渡态的能量和数量起着关键作用。沿着路径涉及多个配位变化的传输存在固有的最小活化能。在某些晶格尺寸下,不同配位的能量可能变得相等,当路径涉及单个配位变化时会导致更低的能垒。我们的模型为卤化物超离子导体的优化和设计标准提供了更深入的理解。