Griffith Kent J, Seymour Ieuan D, Hope Michael A, Butala Megan M, Lamontagne Leo K, Preefer Molleigh B, Koçer Can P, Henkelman Graeme, Morris Andrew J, Cliffe Matthew J, Dutton Siân E, Grey Clare P
Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom.
Department of Chemistry and the Oden Institute for Computational Engineering and Sciences , The University of Texas at Austin , Austin , Texas 78712 , United States.
J Am Chem Soc. 2019 Oct 23;141(42):16706-16725. doi: 10.1021/jacs.9b06669. Epub 2019 Oct 14.
TiNbO is a Wadsley-Roth phase with a crystallographic shear structure and is a promising candidate for high-rate lithium ion energy storage. The fundamental aspects of the lithium insertion mechanism and conduction in TiNbO, however, are not well-characterized. Herein, experimental and computational insights are combined to understand the inherent properties of bulk TiNbO. The results show an increase in electronic conductivity of seven orders of magnitude upon lithiation and indicate that electrons exhibit both localized and delocalized character, with a maximum Curie constant and Li NMR paramagnetic shift near a composition of LiTiNbO. Square-planar or distorted-five-coordinate lithium sites are calculated to invert between thermodynamic minima or transition states. Lithium diffusion in the single-redox region (i.e., ≤ 3 in LiTiNbO) is rapid with low activation barriers from NMR and = 10 m s at the temperature of the observed minima of 525-650 K for ≥ 0.75. DFT calculations predict that ionic diffusion, like electronic conduction, is anisotropic with activation barriers for lithium hopping of 100-200 meV down the tunnels but ca. 700-1000 meV across the blocks. Lithium mobility is hindered in the multiredox region (i.e., > 3 in LiTiNbO), related to a transition from interstitial-mediated to vacancy-mediated diffusion. Overall, lithium insertion leads to effective n-type self-doping of TiNbO and high-rate conduction, while ionic motion is eventually hindered at high lithiation. Transition-state searching with beyond Li chemistries (Na, K, Mg) in TiNbO reveals high diffusion barriers of 1-3 eV, indicating that this structure is specifically suited to Li mobility.
TiNbO是一种具有晶体学剪切结构的瓦兹利-罗思相,是高倍率锂离子储能的一个有潜力的候选材料。然而,TiNbO中锂嵌入机制和传导的基本方面尚未得到很好的表征。在此,结合实验和计算见解来理解块状TiNbO的固有特性。结果表明,锂化后电子电导率增加了七个数量级,表明电子表现出局域和离域特征,在LiTiNbO组成附近具有最大居里常数和锂核磁共振顺磁位移。计算得出,平面正方形或扭曲的五配位锂位点在热力学最小值或过渡态之间反转。在单氧化还原区域(即LiTiNbO中x≤3),锂的扩散很快,核磁共振显示其活化能垒较低,在525 - 650 K的观测最小值温度下,当x≥0.75时,扩散系数D = 10⁻¹⁰ m² s⁻¹。密度泛函理论计算预测,离子扩散与电子传导一样具有各向异性,沿隧道方向锂跳跃的活化能垒为100 - 200 meV,但跨块方向约为700 - 1000 meV。在多氧化还原区域(即LiTiNbO中x > 3),锂的迁移受到阻碍,这与从间隙介导扩散到空位介导扩散的转变有关。总体而言,锂嵌入导致TiNbO有效的n型自掺杂和高倍率传导,而在高锂化时离子运动最终受到阻碍。用TiNbO中除锂以外的化学元素(钠、钾、镁)进行过渡态搜索,发现扩散能垒高达1 - 3 eV,表明这种结构特别适合锂的迁移。