Ranjan Subham, Kumar Avulu Vinod, Chandrasekar Rajadurai, Takamizawa Satoshi
Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan.
School of Chemistry and Centre for Nanotechnology, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India.
Nat Commun. 2024 Aug 29;15(1):7478. doi: 10.1038/s41467-024-51504-5.
The precise, reversible, and diffusionless shape-switching ability of organic ferroelastic crystals, while maintaining their structural integrity, positions them as promising materials for next-generation hybrid photonic devices. Herein, we present versatile bi-directional ferroelasticity and optical waveguide properties of three isomorphous, halogen-based, Schiff base organic crystals. These crystals exhibit sharp bending at multiple interfaces driven by molecular movement around the CH = N bond and subsequent 180° rotational twinning, offering controlled light path manipulation. The ferroelastic nature of these crystals allowed the construction of robust hybrid photonic structures, including Z-shaped configurations, closed-loop networks, and staircase-like hybrid optical waveguides. This study highlights the potential of shape-switchable organoferroelastic crystals as waveguides for applications in programmable photonic devices.
有机铁弹性晶体精确、可逆且无扩散的形状转换能力,在保持其结构完整性的同时,使其成为下一代混合光子器件的有前景材料。在此,我们展示了三种同构的、基于卤素的席夫碱有机晶体的多功能双向铁弹性和光波导特性。这些晶体在由围绕CH=N键的分子运动及随后的180°旋转孪晶驱动的多个界面处呈现出急剧弯曲,实现了可控的光路操纵。这些晶体的铁弹性性质使得能够构建坚固的混合光子结构,包括Z形配置、闭环网络和阶梯状混合光波导。本研究突出了形状可切换的有机铁弹性晶体作为可编程光子器件应用中的波导的潜力。