Sasaki Toshiyuki, Sakamoto Shunichi, Takasaki Yuichi, Takamizawa Satoshi
Department of MaterialsSystemScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan.
Angew Chem Int Ed Engl. 2020 Mar 9;59(11):4340-4343. doi: 10.1002/anie.201914954. Epub 2020 Jan 29.
Mechanical twinning changes atomic, molecular, and crystal orientations along with directions of the anisotropic properties of the crystalline materials while maintaining single crystallinity in each domain. However, such deformability has been less studied in brittle organic crystals despite their remarkable anisotropic functions. Herein we demonstrate a direction-dependent mechanical twinning that shows superelasticity in one direction and ferroelasticity in two other directions in a single crystal of 1,3-bis(4-methoxyphenyl)urea. The crystal can undergo stepwise twinning and ferroelastically forms various shapes with multiple domains oriented in different directions, thereby affording a crystal that shows superelasticity in multiple directions. This adaptability and shape recoverability in a ferroelastic and superelastic single crystal under ambient conditions are of great importance in future applications of organic crystals as mechanical materials, such as in soft robotics.
机械孪晶改变了原子、分子和晶体的取向以及晶体材料各向异性性质的方向,同时在每个区域保持单晶性。然而,尽管脆性有机晶体具有显著的各向异性功能,但对其这种可变形性的研究较少。在此,我们展示了一种方向依赖的机械孪晶,在1,3-双(4-甲氧基苯基)脲单晶中,它在一个方向上表现出超弹性,在另外两个方向上表现出铁弹性。该晶体可经历逐步孪晶,并通过铁弹性形成具有多个不同方向取向区域的各种形状,从而得到一种在多个方向上都表现出超弹性的晶体。在环境条件下,这种铁弹性和超弹性单晶中的适应性和形状恢复性对于有机晶体作为机械材料的未来应用,如在软机器人技术中,具有重要意义。