Suppr超能文献

磷酸化控制开关赋予细胞周期依赖性蛋白质重定位。

A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.

出版信息

Nat Cell Biol. 2024 Oct;26(10):1804-1816. doi: 10.1038/s41556-024-01495-8. Epub 2024 Aug 29.

Abstract

Tools for acute manipulation of protein localization enable elucidation of spatiotemporally defined functions, but their reliance on exogenous triggers can interfere with cell physiology. This limitation is particularly apparent for studying mitosis, whose highly choreographed events are sensitive to perturbations. Here we exploit the serendipitous discovery of a phosphorylation-controlled, cell cycle-dependent localization change of the adaptor protein PLEKHA5 to develop a system for mitosis-specific protein recruitment to the plasma membrane that requires no exogenous stimulus. Mitosis-enabled anchor-away/recruiter system comprises an engineered, 15 kDa module derived from PLEKHA5 capable of recruiting functional protein cargoes to the plasma membrane during mitosis, either through direct fusion or via GFP-GFP nanobody interaction. Applications of the mitosis-enabled anchor-away/recruiter system include both knock sideways to rapidly extract proteins from their native localizations during mitosis and conditional recruitment of lipid-metabolizing enzymes for mitosis-selective editing of plasma membrane lipid content, without the need for exogenous triggers or perturbative synchronization methods.

摘要

用于急性蛋白质定位操作的工具可以阐明时空定义的功能,但它们对外源触发的依赖可能会干扰细胞生理学。这一限制在研究有丝分裂时尤为明显,有丝分裂的高度协调事件对干扰很敏感。在这里,我们利用支架蛋白 PLEKHA5 的磷酸化控制的、细胞周期依赖性定位变化的偶然发现,开发了一种用于有丝分裂特异性蛋白质募集到质膜的系统,该系统不需要外源刺激。有丝分裂使能的锚定/招募系统由源自 PLEKHA5 的工程化的 15 kDa 模块组成,在有丝分裂期间,该模块能够通过直接融合或 GFP-GFP 纳米抗体相互作用将功能性蛋白质货物募集到质膜。有丝分裂使能的锚定/招募系统的应用包括快速敲除侧向,以便在有丝分裂期间从其天然定位中提取蛋白质,以及条件性招募脂质代谢酶,用于有丝分裂选择性编辑质膜脂质含量,而无需外源触发或干扰性同步方法。

相似文献

1
A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization.
Nat Cell Biol. 2024 Oct;26(10):1804-1816. doi: 10.1038/s41556-024-01495-8. Epub 2024 Aug 29.
2
A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization.
bioRxiv. 2024 Jun 6:2024.06.05.597552. doi: 10.1101/2024.06.05.597552.
4
Remodeling of ER-plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca influx in mitosis.
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10392-10401. doi: 10.1073/pnas.1821399116. Epub 2019 May 7.
5
Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination.
Cell Cycle. 2013 Mar 1;12(5):762-72. doi: 10.4161/cc.23713. Epub 2013 Feb 6.
6
[Localization of p53(301-393) mutant and its effect on mitosis].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2007 Jul;36(4):331-6. doi: 10.3785/j.issn.1008-9292.2007.04.004.
7
Cdk1-mediated phosphorylation of Cdc7 suppresses DNA re-replication.
Cell Cycle. 2016 Jun 2;15(11):1494-505. doi: 10.1080/15384101.2016.1176658. Epub 2016 Apr 22.
8
Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle.
Mol Biol Cell. 2001 Jun;12(6):1645-69. doi: 10.1091/mbc.12.6.1645.
9
Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis.
EMBO Rep. 2014 Mar;15(3):273-81. doi: 10.1002/embr.201338080. Epub 2014 Jan 10.
10
The TRAF-interacting protein (TRAIP) is a novel E2F target with peak expression in mitosis.
Oncotarget. 2015 Aug 28;6(25):20933-45. doi: 10.18632/oncotarget.3055.

引用本文的文献

1
Emerging Approaches for Studying Lipid Dynamics, Metabolism, and Interactions in Cells.
Annu Rev Biochem. 2025 Jun;94(1):417-446. doi: 10.1146/annurev-biochem-083024-110827. Epub 2025 Mar 18.
2
Inhibition of SQSTM1/p62 oligomerization and Keap1 sequestration by the Cullin-3 adaptor SHKBP1.
bioRxiv. 2025 Jan 22:2025.01.21.634088. doi: 10.1101/2025.01.21.634088.
3
Exploiting cell cycle-dependent dephosphorylation for mitosis-specific protein recruitment.
Nat Rev Mol Cell Biol. 2025 Jan;26(1):5. doi: 10.1038/s41580-024-00808-x.

本文引用的文献

1
Activity-based directed evolution of a membrane editor in mammalian cells.
Nat Chem. 2023 Jul;15(7):1030-1039. doi: 10.1038/s41557-023-01214-0. Epub 2023 May 22.
2
Dephosphorylation of neural wiring protein shootin1 by PP1 phosphatase regulates netrin-1-induced axon guidance.
J Biol Chem. 2023 May;299(5):104687. doi: 10.1016/j.jbc.2023.104687. Epub 2023 Apr 11.
3
Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite.
J Proteome Res. 2023 Feb 3;22(2):615-624. doi: 10.1021/acs.jproteome.2c00624. Epub 2023 Jan 17.
4
An atlas of substrate specificities for the human serine/threonine kinome.
Nature. 2023 Jan;613(7945):759-766. doi: 10.1038/s41586-022-05575-3. Epub 2023 Jan 11.
5
Proximity Labeling Reveals Spatial Regulation of the Anaphase-Promoting Complex/Cyclosome by a Microtubule Adaptor.
ACS Chem Biol. 2022 Sep 16;17(9):2605-2618. doi: 10.1021/acschembio.2c00527. Epub 2022 Aug 11.
6
A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation.
Cell Chem Biol. 2022 Sep 15;29(9):1446-1464.e10. doi: 10.1016/j.chembiol.2022.06.005. Epub 2022 Jul 13.
7
Advances and enabling technologies for phase-specific cell cycle synchronisation.
Lab Chip. 2022 Feb 1;22(3):445-462. doi: 10.1039/D1LC00724F.
8
Temperature-responsive optogenetic probes of cell signaling.
Nat Chem Biol. 2022 Feb;18(2):152-160. doi: 10.1038/s41589-021-00917-0. Epub 2021 Dec 22.
9
Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs).
ACS Chem Biol. 2021 Dec 17;16(12):2808-2815. doi: 10.1021/acschembio.1c00693. Epub 2021 Nov 15.
10
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.
Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552. doi: 10.1093/nar/gkab1038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验