跨蛋白质组学分析流程:基于质谱的稳健蛋白质组学数据分析套件。

Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite.

机构信息

Institute for Systems Biology, Seattle, Washington 98109, United States.

Proteomics Resource, University of Washington, Seattle, Washington 98195, United States.

出版信息

J Proteome Res. 2023 Feb 3;22(2):615-624. doi: 10.1021/acs.jproteome.2c00624. Epub 2023 Jan 17.

Abstract

The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.

摘要

自 20 年前首次发布 PeptideProphet 和 ProteinProphet 以来,跨蛋白质组学管道 (TPP) 质谱数据分析套件一直在不断发展和完善。当前版本提供了大量用于光谱处理、光谱搜索、搜索验证、丰度计算、蛋白质推断等的工具。许多工具包括机器学习建模,以从数据集提取最多的信息,并构建稳健的统计模型来计算得出的信息正确的概率。在这里,我们介绍了 TPP 的最新信息,以及如何在从个人 Windows 笔记本电脑到 Linux 集群和广阔的云计算环境等各种平台上部署 TPP。我们描述了如何以各种方式使用 TPP 的教程,并描述了利用 TPP 的协同项目。最后,我们计划继续开发 TPP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索