Mueller Brian D, Merrill Sean A, Von Diezmann Lexy, Jorgensen Erik M
School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
Howard Hughes Medical Institute, Salt Lake City, UT, USA.
Bio Protoc. 2024 Aug 20;14(16):e5049. doi: 10.21769/BioProtoc.5049.
Calcium channels at synaptic boutons are critical for synaptic function, but their number and distribution are poorly understood. This gap in knowledge is primarily due to the resolution limits of fluorescence microscopy. In the last decade, the diffraction limit of light was surpassed, and fluorescent molecules can now be localized with nanometer precision. Concurrently, new gene editing strategies allowed direct tagging of the endogenous calcium channel genes-expressed in the correct cells and at physiological levels. Further, the repurposing of self-labeling enzymes to attach fluorescent dyes to proteins improved photon yields enabling efficient localization of single molecules. Here, we describe tagging strategies, localization microscopy, and data analysis for calcium channel localization. In this case, we are imaging calcium channels fused with SNAP or HALO tags in live anesthetized nematodes, but the analysis is relevant for any super-resolution preparations. We describe how to process images into localizations and protein clusters into confined nanodomains. Finally, we discuss strategies for estimating the number of calcium channels present at synaptic boutons. Key features • Super-resolution imaging of live anesthetized • Three-color super-resolution reconstruction of synapses. • Nanodomains and the distribution of proteins. • Quantification of the number of proteins at synapses from single-molecule localization data.
突触小体处的钙通道对突触功能至关重要,但其数量和分布却知之甚少。这一知识空白主要归因于荧光显微镜的分辨率限制。在过去十年中,光的衍射极限被突破,现在荧光分子可以以纳米精度进行定位。同时,新的基因编辑策略能够直接标记在内源细胞中以生理水平表达的钙通道基因。此外,将自标记酶重新用于将荧光染料附着到蛋白质上提高了光子产量,从而能够有效地定位单个分子。在此,我们描述了用于钙通道定位的标记策略、定位显微镜技术和数据分析。在这种情况下,我们对在活体麻醉线虫中与SNAP或HALO标签融合的钙通道进行成像,但该分析适用于任何超分辨率制剂。我们描述了如何将图像处理成定位信息,以及将蛋白质簇处理成受限的纳米域。最后,我们讨论了估计突触小体处存在的钙通道数量的策略。关键特性• 活体麻醉状态下的超分辨率成像• 突触的三色超分辨率重建• 纳米域和蛋白质的分布• 从单分子定位数据中量化突触处蛋白质的数量