临床研究中数据驱动的假设生成:我们从一项人体研究中学到了什么?

Data-Driven Hypothesis Generation in Clinical Research: What We Learned from a Human Subject Study?

作者信息

Jing Xia, Cimino James J, Patel Vimla L, Zhou Yuchun, Shubrook Jay H, Liu Chang, De Lacalle Sonsoles

机构信息

Department of Public Health Sciences, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC.

Informatics Institute, School of Medicine, University of Alabama, Birmingham, Birmingham, AL.

出版信息

Med Res Arch. 2024 Feb;12(2). doi: 10.18103/mra.v12i2.5132. Epub 2024 Feb 28.

Abstract

Hypothesis generation is an early and critical step in any hypothesis-driven clinical research project. Because it is not yet a well-understood cognitive process, the need to improve the process goes unrecognized. Without an impactful hypothesis, the significance of any research project can be questionable, regardless of the rigor or diligence applied in other steps of the study, e.g., study design, data collection, and result analysis. In this perspective article, the authors provide a literature review on the following topics first: scientific thinking, reasoning, medical reasoning, literature-based discovery, and a field study to explore scientific thinking and discovery. Over the years, scientific thinking has shown excellent progress in cognitive science and its applied areas: education, medicine, and biomedical research. However, a review of the literature reveals the lack of original studies on hypothesis generation in clinical research. The authors then summarize their first human participant study exploring data-driven hypothesis generation by clinical researchers in a simulated setting. The results indicate that a secondary data analytical tool, VIADS-a visual interactive analytic tool for filtering, summarizing, and visualizing large health data sets coded with hierarchical terminologies, can shorten the time participants need, on average, to generate a hypothesis and also requires fewer cognitive events to generate each hypothesis. As a counterpoint, this exploration also indicates that the quality ratings of the hypotheses thus generated carry significantly lower ratings for feasibility when applying VIADS. Despite its small scale, the study confirmed the feasibility of conducting a human participant study directly to explore the hypothesis generation process in clinical research. This study provides supporting evidence to conduct a larger-scale study with a specifically designed tool to facilitate the hypothesis-generation process among inexperienced clinical researchers. A larger study could provide generalizable evidence, which in turn can potentially improve clinical research productivity and overall clinical research enterprise.

摘要

假设生成是任何假设驱动的临床研究项目中的早期关键步骤。由于它尚未成为一个被充分理解的认知过程,改进这一过程的需求未得到认可。没有一个有影响力的假设,任何研究项目的意义都可能受到质疑,无论在研究的其他步骤(如研究设计、数据收集和结果分析)中应用的严谨性或勤奋程度如何。在这篇观点文章中,作者首先对以下主题进行了文献综述:科学思维、推理、医学推理、基于文献的发现以及一项探索科学思维和发现的实地研究。多年来,科学思维在认知科学及其应用领域(教育、医学和生物医学研究)取得了显著进展。然而,文献综述显示临床研究中关于假设生成的原创性研究匮乏。作者随后总结了他们的第一项人体参与者研究,该研究在模拟环境中探索临床研究人员数据驱动的假设生成。结果表明,一种辅助数据分析工具VIADS(一种用于过滤、总结和可视化用分层术语编码的大型健康数据集的视觉交互式分析工具)可以缩短参与者平均生成一个假设所需的时间,并且生成每个假设所需的认知事件也更少。作为对比,这项探索还表明,使用VIADS生成的假设在可行性方面的质量评级显著较低。尽管规模较小,但该研究证实了直接进行人体参与者研究以探索临床研究中假设生成过程的可行性。这项研究为使用专门设计的工具进行更大规模的研究提供了支持性证据,以促进缺乏经验的临床研究人员的假设生成过程。一项更大规模的研究可以提供可推广的证据,进而有可能提高临床研究的生产力和整个临床研究事业。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b21d/11361316/0c6b46e860f1/nihms-1968409-f0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索