Suppr超能文献

使用出声思维法来识别经验不足的临床研究人员在生成数据驱动的科学假设时的认知事件。

Using think-aloud protocol to identify cognitive events while generating data-driven scientific hypotheses by inexperienced clinical researchers.

作者信息

Jing Xia, Draghi Brooke N, Ernst Mytchell A, Patel Vimla L, Cimino James J, Shubrook Jay H, Zhou Yuchun, Liu Chang, De Lacalle Sonsoles

机构信息

Department of Public Health Sciences, Clemson University, Clemson, SC.

Cognitive Studies in Medicine and Public Health, The New York Academy of Medicine, New York City, NY.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:561-570. eCollection 2024.

Abstract

We conducted a data-driven hypothesis generation study with clinical researchers using VIADS (a visual interactive analysis tool for filtering and summarizing large data sets coded with hierarchical terminologies) or other analytical tools (as control, e.g., SPSS, SAS, R). The participants analyzed the same datasets and developed hypotheses using a think-aloud verbal protocol. Their screen activities and audio were recorded, transcribed, and coded for cognitive events. We analyzed the recordings to identify the cognitive events (e.g., "Analyze data") during hypothesis generation. The VIADS group exhibited the lowest mean number of cognitive events per hypothesis with the smallest standard deviation. The highest percentages of cognitive events in hypothesis generation were "Using analysis results" (30%) and "Seeking connections" (23%). The results suggest that VIADS may guide participants better than the control group. Our framework for scientific hypothesis generation in clinical research contexts guides the elaboration of the underlying cognitive mechanism of the process.

摘要

我们与临床研究人员开展了一项数据驱动的假设生成研究,使用了VIADS(一种用于筛选和总结用分层术语编码的大数据集的视觉交互分析工具)或其他分析工具(作为对照,例如SPSS、SAS、R)。参与者分析相同的数据集,并使用出声思考的口头协议来生成假设。记录他们的屏幕活动和音频,进行转录,并对认知事件进行编码。我们分析这些记录,以识别假设生成过程中的认知事件(例如,“分析数据”)。VIADS组每个假设的认知事件平均数量最低,标准差最小。假设生成过程中认知事件的最高百分比是“使用分析结果”(30%)和“寻找联系”(23%)。结果表明,与对照组相比,VIADS可能能更好地引导参与者。我们在临床研究背景下进行科学假设生成的框架指导了对该过程潜在认知机制的阐述。

相似文献

本文引用的文献

5
Large-Scale Validation of Hypothesis Generation Systems via Candidate Ranking.通过候选排序对假设生成系统进行大规模验证。
Proc IEEE Int Conf Big Data. 2018 Dec;2018:1494-1503. doi: 10.1109/bigdata.2018.8622637. Epub 2019 Jan 24.
10
Literature Based Discovery: Models, methods, and trends.文献基础发现:模型、方法和趋势。
J Biomed Inform. 2017 Oct;74:20-32. doi: 10.1016/j.jbi.2017.08.011. Epub 2017 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验