Jing Xia, Draghi Brooke N, Ernst Mytchell A, Patel Vimla L, Cimino James J, Shubrook Jay H, Zhou Yuchun, Liu Chang, De Lacalle Sonsoles
Department of Public Health Sciences, Clemson University, Clemson, SC.
Cognitive Studies in Medicine and Public Health, The New York Academy of Medicine, New York City, NY.
AMIA Annu Symp Proc. 2025 May 22;2024:561-570. eCollection 2024.
We conducted a data-driven hypothesis generation study with clinical researchers using VIADS (a visual interactive analysis tool for filtering and summarizing large data sets coded with hierarchical terminologies) or other analytical tools (as control, e.g., SPSS, SAS, R). The participants analyzed the same datasets and developed hypotheses using a think-aloud verbal protocol. Their screen activities and audio were recorded, transcribed, and coded for cognitive events. We analyzed the recordings to identify the cognitive events (e.g., "Analyze data") during hypothesis generation. The VIADS group exhibited the lowest mean number of cognitive events per hypothesis with the smallest standard deviation. The highest percentages of cognitive events in hypothesis generation were "Using analysis results" (30%) and "Seeking connections" (23%). The results suggest that VIADS may guide participants better than the control group. Our framework for scientific hypothesis generation in clinical research contexts guides the elaboration of the underlying cognitive mechanism of the process.
我们与临床研究人员开展了一项数据驱动的假设生成研究,使用了VIADS(一种用于筛选和总结用分层术语编码的大数据集的视觉交互分析工具)或其他分析工具(作为对照,例如SPSS、SAS、R)。参与者分析相同的数据集,并使用出声思考的口头协议来生成假设。记录他们的屏幕活动和音频,进行转录,并对认知事件进行编码。我们分析这些记录,以识别假设生成过程中的认知事件(例如,“分析数据”)。VIADS组每个假设的认知事件平均数量最低,标准差最小。假设生成过程中认知事件的最高百分比是“使用分析结果”(30%)和“寻找联系”(23%)。结果表明,与对照组相比,VIADS可能能更好地引导参与者。我们在临床研究背景下进行科学假设生成的框架指导了对该过程潜在认知机制的阐述。