Quintana J M, Jiang F, Kang M, Valladolid Onecha V, Könik A, Qin L, Rodriguez V E, Hu H, Borges N, Khurana I, Banla L I, Le Fur M, Caravan P, Schuemann J, Bertolet A, Weissleder R, Miller M A, Ng T S C
bioRxiv. 2024 Aug 6:2024.08.02.606075. doi: 10.1101/2024.08.02.606075.
Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof-of-principle, we tested whether this strategy of " dionuclide nduced rug ngagement for elease" ( ) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing exposure to activated chemotherapy in off-target sites.
We screened the ability of radionuclides to chemically activate a model radiation-activated prodrug consisting of the microtubule destabilizing monomethyl auristatin E caged by a radiation-responsive phenyl azide ("caged-MMAE") and interpreted experimental results using the radiobiology computational simulation suite TOPAS-nBio. RAiDER was evaluated in syngeneic mouse models of cancer using fibroblast activation protein inhibitor (FAPI) agents Tc-FAPI-34 and Lu-FAPI-04, the prostate-specific membrane antigen (PSMA) agent Lu-PSMA-617, combined with caged-MMAE or caged-exatecan. Biodistribution in mice, combined with clinical dosimetry, estimated the relationship between radiopharmaceutical uptake in patients and anticipated concentrations of activated prodrug using RAiDER.
RAiDER efficiency varied by 250-fold across radionuclides ( Tc> Lu> Cu> Ga> Ra> F), yielding up to 1.22µM prodrug activation per Gy of exposure from Tc. Computational simulations implicated low-energy electron-mediated free radical formation as driving prodrug activation. Clinically relevant radionuclide concentrations chemically activated caged-MMAE restored its ability to destabilize microtubules and increased its cytotoxicity by up to 600-fold compared to non-irradiated prodrug. Mice treated with Tc-FAPI-34 and caged-MMAE accumulated up to 3000× greater concentrations of activated MMAE in tumors compared to other tissues. RAiDER with Tc-FAPI-34 or Lu-FAPI-04 delayed tumor growth, while monotherapies did not ( <0.03). Clinically-guided dosimetry suggests sufficient radiation doses can be delivered to activate therapeutically meaningful levels of prodrug.
This proof-of-concept study shows that RAiDER is compatible with multiple radionuclides commonly used in nuclear medicine and has the potential to improve the efficacy of radiopharmaceutical therapies to treat cancer safely. RAiDER thus shows promise as an effective strategy to treat disseminated malignancies and broadens the capability of radiopharmaceuticals to trigger diverse biological and therapeutic responses.
用于成像和治疗的放射性核素在与适当的靶向配体结合时,可在体内显示出高分子特异性。我们推测,分子靶向放射性核素传递的局部能量可在疾病部位化学激活前药,同时避免在非靶向毒性部位激活。作为原理验证,我们测试了这种“双放射性核素诱导药物释放”(RAiDER)策略是否能局部递送联合放疗和化疗,以最大限度地提高肿瘤细胞毒性,同时最小化非靶向部位对活化化疗的暴露。
我们筛选了放射性核素化学激活一种模型辐射激活前药的能力,该前药由被辐射响应性苯基叠氮化物笼蔽的微管去稳定剂单甲基奥瑞他汀E(“笼蔽-MMAE”)组成,并使用放射生物学计算模拟套件TOPAS-nBio解释实验结果。在同基因小鼠癌症模型中,使用成纤维细胞活化蛋白抑制剂(FAPI)药物锝-99m-FAPI-34和镥-177-FAPI-04、前列腺特异性膜抗原(PSMA)药物镥-177-PSMA-617,结合笼蔽-MMAE或笼蔽-依喜替康,对RAiDER进行评估。小鼠体内生物分布结合临床剂量测定,使用RAiDER估计患者体内放射性药物摄取与预期活化前药浓度之间的关系。
不同放射性核素的RAiDER效率相差250倍(锝-99m>镥-177>铜-64>镓-68>镭-223>氟-18),锝-99m每Gy暴露可产生高达1.22μM的前药活化。计算模拟表明低能电子介导的自由基形成驱动前药活化。临床相关放射性核素浓度化学激活笼蔽-MMAE,恢复了其使微管去稳定的能力,与未照射的前药相比,其细胞毒性增加了高达600倍。与其他组织相比,用锝-99m-FAPI-34和笼蔽-MMAE治疗的小鼠肿瘤中活化MMAE的浓度积累高达3000倍。锝-99m-FAPI-34或镥-177-FAPI-04的RAiDER延迟了肿瘤生长,而单一疗法则没有(P<0.03)。临床指导剂量测定表明,可以递送足够的辐射剂量以激活具有治疗意义水平的前药。
这项概念验证研究表明,RAiDER与核医学中常用的多种放射性核素兼容,有可能提高放射性药物治疗癌症的安全性和疗效。因此,RAiDER作为一种治疗播散性恶性肿瘤的有效策略显示出前景,并拓宽了放射性药物引发多种生物学和治疗反应的能力。