Quintana Jeremy M, Jiang Fangchao, Kang Mikyung, Valladolid Onecha Victor, Könik Arda, Qin Lei, Rodriguez Victoria E, Hu Huiyu, Borges Nicholas, Khurana Ishaan, Banla Leou I, Le Fur Mariane, Caravan Peter, Schuemann Jan, Bertolet Alejandro, Weissleder Ralph, Miller Miles A, Ng Thomas S C
Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.
Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
J Nucl Med. 2025 Jan 3;66(1):91-97. doi: 10.2967/jnumed.124.268559.
Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy. We screened the ability of radionuclides to chemically activate a model radiation-activated prodrug consisting of the microtubule-destabilizing monomethyl auristatin E (MMAE) caged by a radiation-responsive phenyl azide, and we interpreted experimental results using the radiobiology computational simulation suite TOPAS-nBio. RAiDER was evaluated in syngeneic mouse models of cancer using the fibroblast activation protein inhibitor (FAPI) agents [Tc]Tc-FAPI-34 and [Lu]Lu-FAPI-04 and the prostate-specific membrane antigen (PSMA) agent [Lu]Lu-PSMA-617, combined with caged MMAE or caged exatecan. Biodistribution in mice, combined with clinical dosimetry, estimated the relationship between radiopharmaceutical uptake in patients and anticipated concentrations of activated prodrug using RAiDER. RAiDER efficiency varied by 70-fold across radionuclides (Tc > In > Lu > Cu > P > Ga > Ra > F), yielding up to 320 nM prodrug activation/Gy of exposure from Tc. Computational simulations implicated low-energy electron-mediated free radical formation as driving prodrug activation. Radionuclide-activated caged MMAE restored the prodrug's ability to destabilize microtubules and increased its cytotoxicity by up to 2,600-fold that of the nonactivated prodrug. Mice treated with [Tc]Tc-FAPI-34 and caged MMAE accumulated concentrations of activated MMAE that were up to 3,000 times greater in tumors than in other tissues. RAiDER with [Tc]Tc-FAPI-34 or [Lu]Lu-FAPI-04 delayed tumor growth, whereas monotherapies did not ( < 0.003). Clinically guided dosimetry suggests sufficient radiation doses can be delivered to activate therapeutically meaningful levels of prodrug. This proof-of-concept study shows that RAiDER is compatible with multiple radionuclides commonly used in nuclear medicine and can potentially improve the efficacy of radiopharmaceutical therapies to treat cancer safely. RAiDER thus shows promise as an effective strategy to treat disseminated malignancies and broadens the capability of radiopharmaceuticals to trigger diverse biologic and therapeutic responses.
用于成像和治疗的放射性核素与合适的靶向配体结合后,可在体内表现出高分子特异性。我们推测,分子靶向放射性核素传递的局部能量能够在疾病部位化学激活前药,同时避免在毒性脱靶部位激活。作为原理验证,我们测试了这种放射性核素诱导药物释放(RAiDER)策略是否能局部递送联合放疗和化疗,以最大化肿瘤细胞毒性,同时最小化脱靶部位对活化化疗药物的暴露。我们筛选了放射性核素化学激活一种模型辐射激活前药的能力,该前药由被辐射响应性苯基叠氮化物包裹的微管破坏剂单甲基奥瑞他汀E(MMAE)组成,并使用放射生物学计算模拟套件TOPAS-nBio解释实验结果。在同基因小鼠癌症模型中,使用成纤维细胞活化蛋白抑制剂(FAPI)药物[Tc]Tc-FAPI-34和[Lu]Lu-FAPI-04以及前列腺特异性膜抗原(PSMA)药物[Lu]Lu-PSMA-617,结合包裹的MMAE或包裹的依喜替康,对RAiDER进行了评估。小鼠体内的生物分布结合临床剂量测定,估计了患者体内放射性药物摄取与使用RAiDER预期的活化前药浓度之间的关系。不同放射性核素的RAiDER效率相差70倍(Tc>In>Lu>Cu>P>Ga>Ra>F),Tc产生的前药活化量高达320 nM/Gy暴露量。计算模拟表明,低能电子介导的自由基形成驱动前药活化。放射性核素激活的包裹MMAE恢复了前药破坏微管的能力,其细胞毒性比未活化前药增加了2600倍。用[Tc]Tc-FAPI-34和包裹的MMAE治疗的小鼠,肿瘤中活化MMAE的积累浓度比其他组织高3000倍。用[Tc]Tc-FAPI-34或[Lu]Lu-FAPI-04进行的RAiDER延缓了肿瘤生长,而单一疗法则没有(<0.003)。临床指导剂量测定表明,可以递送足够的辐射剂量以激活具有治疗意义水平的前药。这项概念验证研究表明,RAiDER与核医学中常用的多种放射性核素兼容,并且有可能提高放射性药物治疗癌症的安全性和有效性。因此,RAiDER有望成为治疗播散性恶性肿瘤的有效策略,并拓宽放射性药物引发多种生物学和治疗反应的能力。