Hefzi Hooman, Martínez-Monge Iván, Marin de Mas Igor, Cowie Nicholas Luke, Toledo Alejandro Gomez, Noh Soo Min, Karottki Karen Julie la Cour, Decker Marianne, Arnsdorf Johnny, Camacho-Zaragoza Jose Manuel, Kol Stefan, Schoffelen Sanne, Pristovšek Nuša, Hansen Anders Holmgaard, Miguez Antonio A, Bjorn Sara Petersen, Brøndum Karen Kathrine, Javidi Elham Maria, Jensen Kristian Lund, Stangl Laura, Kreidl Emanuel, Kallehauge Thomas Beuchert, Ley Daniel, Ménard Patrice, Petersen Helle Munck, Sukhova Zulfiya, Bauer Anton, Casanova Emilio, Barron Niall, Malmström Johan, Nielsen Lars K, Lee Gyun Min, Kildegaard Helene Faustrup, Voldborg Bjørn G, Lewis Nathan E
bioRxiv. 2024 Aug 6:2024.08.02.606284. doi: 10.1101/2024.08.02.606284.
The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.
瓦伯格效应在包括癌细胞在内的增殖性哺乳动物细胞中普遍存在,但对生物制药生产构成挑战,因为乳酸积累会抑制细胞生长和蛋白质生产。此前通过基因敲除消除乳酸生成的努力在哺乳动物生物加工中失败了,因为已证明乳酸脱氢酶至关重要。然而,在此我们通过同时敲除乳酸脱氢酶和参与通常抑制丙酮酸转化为乙酰辅酶A的负反馈回路的调节因子,消除了中国仓鼠卵巢(CHO)细胞和HEK293细胞中的瓦伯格效应。与关于有氧糖酵解作用的长期假设相反,无瓦伯格效应的细胞保持野生型生长速率,同时产生可忽略不计的乳酸。对无瓦伯格效应的CHO细胞的进一步表征显示,其耗氧量有代偿性增加,几乎完全依赖氧化代谢,且在分批补料细胞培养中细胞密度更高。这些细胞仍然适合生产多种生物治疗蛋白,达到了工业相关的滴度并维持了产物糖基化。因此,消除瓦伯格效应的能力是生物治疗生产的一项重要进展,并为研究一种几乎普遍存在的代谢现象提供了一种工具。