Suppr超能文献

线粒体内褪黑素的功能及其与瓦伯格代谢的关联。

Function of intramitochondrial melatonin and its association with Warburg metabolism.

作者信息

Reiter Russel J, Sharma Ramaswamy, Bai Yidong, Chuffa Luiz Gustavo de Almeida, Loh Doris, Fan Lihong, Cardinali Daniel P

机构信息

Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA..

Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA..

出版信息

Cell Signal. 2025 Jul;131:111754. doi: 10.1016/j.cellsig.2025.111754. Epub 2025 Mar 21.

Abstract

Warburg metabolism (aerobic glycolysis) is accompanied by high mitochondrial reactive oxygen species (ROS) generation from the electron transport chain; this is a "Hallmark of Cancer". The elevated ROS sustain the growth and proliferation of the cancer cells. Melatonin is a potent and functionally diverse free radical scavenger and antioxidant that is synthesized in the mitochondria of non-pathological cells and normally aids in keeping mitochondrial ROS levels low and in maintaining redox homeostasis. Because the glucose metabolite, pyruvate, does not enter mitochondria of Warburg metabolizing cells due to the inhibition of pyruvate dehydrogenase complex (PDH), acetyl coenzyme A production is diminished. Acetyl coenzyme A is a necessary co-substrate with serotonin for melatonin synthesis; thus, intramitochondrial melatonin levels become reduced in cancer cells. The hypothesis is that the depressed melatonin levels initiate aerobic glycolysis and allow the exaggerated ROS concentrations to go uncontested; the authors speculate that the elevated mtROS upregulates hypoxia inducible factor 1α (HIF-1α)/pyruvate dehydrogenase kinase (PDK) axis which inhibits PDH, thereby supporting cancer cell proliferation and stimulating cancer biomass. Exposing Warburg metabolizing cancer cells to melatonin elevates intramitochondrial melatonin, thereby reducing mtROS and concurrently interrupting aerobic glycolysis and inhibiting tumor cell proliferation. Mechanistically, higher mitochondrial melatonin levels by supplementation directly upregulates the sirtuin 3 (SIRT3)/FOXO/PDH axis, allowing pyruvate entry into mitochondria and enhancing intrinsic mitochondrial melatonin production as in non-pathological cells. Additionally, melatonin inhibits HIF1α, thereby decreasing PDK activity and disinhibiting PDH, so pyruvate enters mitochondria and is metabolized to acetyl coenzyme A, resulting in reversal of Warburg metabolism.

摘要

瓦伯格代谢(有氧糖酵解)伴随着电子传递链产生大量线粒体活性氧(ROS);这是“癌症的标志”之一。升高的ROS维持癌细胞的生长和增殖。褪黑素是一种强效且功能多样的自由基清除剂和抗氧化剂,在非病理细胞的线粒体中合成,通常有助于保持线粒体ROS水平较低并维持氧化还原稳态。由于丙酮酸脱氢酶复合物(PDH)受到抑制,葡萄糖代谢产物丙酮酸无法进入进行瓦伯格代谢的细胞的线粒体,导致乙酰辅酶A的生成减少。乙酰辅酶A是褪黑素合成中与血清素必需的共同底物;因此,癌细胞线粒体内的褪黑素水平会降低。该假说认为,褪黑素水平降低会引发有氧糖酵解,并使过高的ROS浓度不受抑制;作者推测,升高的线粒体ROS会上调缺氧诱导因子1α(HIF-1α)/丙酮酸脱氢酶激酶(PDK)轴,从而抑制PDH,进而支持癌细胞增殖并刺激癌组织生长。将进行瓦伯格代谢的癌细胞暴露于褪黑素中会提高线粒体内的褪黑素水平,从而降低线粒体ROS,同时中断有氧糖酵解并抑制肿瘤细胞增殖。从机制上讲,通过补充提高线粒体褪黑素水平会直接上调沉默调节蛋白3(SIRT3)/叉头框蛋白O(FOXO)/PDH轴,使丙酮酸进入线粒体,并像在非病理细胞中一样增强线粒体内源性褪黑素的生成。此外,褪黑素会抑制HIF1α,从而降低PDK活性并解除对PDH的抑制,使丙酮酸进入线粒体并代谢为乙酰辅酶A,从而导致瓦伯格代谢逆转。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验