Ren Huaying, Zhou Jingxuan, Zhang Ao, Wu Zixi, Cai Jin, Fu Xiaoyang, Zhou Jingyuan, Wan Zhong, Zhou Boxuan, Huang Yu, Duan Xiangfeng
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.
Precis Chem. 2024 Aug 4;2(8):421-427. doi: 10.1021/prechem.4c00046. eCollection 2024 Aug 26.
Copper-doped BiSe (Cu BiSe) is of considerable interest for tailoring its electronic properties and inducing exotic charge correlations while retaining the unique Dirac surface states. However, the copper dopants in Cu BiSe display complex electronic behaviors and may function as either electron donors or acceptors depending on their concentration and atomic sites within the BiSe crystal lattice. Thus, a precise understanding and control of the doping concentration and sites is of both fundamental and practical significance. Herein, we report a solution-based one-pot synthesis of Cu BiSe nanoplates with systematically tunable Cu doping concentrations and doping sites. Our studies reveal a gradual evolution from intercalative sites to substitutional sites with increasing Cu concentrations. The Cu atoms at intercalative sites function as electron donors while those at the substitutional sites function as electron acceptors, producing distinct effects on the electronic properties of the resulting materials. We further show that CuBiSe exhibits superconducting behavior, which is not present in BiSe, highlighting the essential role of Cu doping in tailoring exotic quantum properties. This study establishes an efficient methodology for precise synthesis of Cu BiSe with tailored doping concentrations, doping sites, and electronic properties.
铜掺杂的BiSe(CuₓBiSe)在调整其电子特性和诱导奇异电荷相关性同时保留独特的狄拉克表面态方面具有相当大的吸引力。然而,CuₓBiSe中的铜掺杂剂表现出复杂的电子行为,并且根据它们在BiSe晶格中的浓度和原子位置,可能充当电子供体或受体。因此,精确理解和控制掺杂浓度和位置具有基础和实际意义。在此,我们报道了一种基于溶液的一锅法合成具有系统可调Cu掺杂浓度和掺杂位置的CuₓBiSe纳米片。我们的研究表明,随着Cu浓度的增加,从插层位置到替代位置会逐渐演变。插层位置的Cu原子充当电子供体,而替代位置的Cu原子充当电子受体,对所得材料的电子特性产生不同影响。我们进一步表明,CuBiSe表现出超导行为,而BiSe中不存在这种行为,突出了Cu掺杂在定制奇异量子特性中的重要作用。这项研究建立了一种有效方法,用于精确合成具有定制掺杂浓度、掺杂位置和电子特性的CuₓBiSe。