Paul Sanjoy, Mondal Sayantan, Shenogina Irina, Cui Qiang
Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA.
Department of Physics, University of Illinois Urbana-Champaign USA.
Chem Sci. 2024 Jul 29;15(34):13788-13799. doi: 10.1039/d4sc02295e. eCollection 2024 Aug 28.
Self-organization of biomolecules can lead to the formation of liquid droplets, hydrogels, and irreversible aggregates that bear immense significance in biology and diseases. Despite the considerable number of studies conducted on biomolecular condensation in bulk solution, there is still a lack of understanding of how different surfaces regulate the condensation process. In this context, recent studies showed that, in contrast to zwitterionic lipid membranes, anionic membranes promoted the production of liquid droplets of FUsed in Sarcoma Low Complexity domain (FUS-LC) despite exhibiting no specific protein-lipid interactions. Moreover, the air-water interface led to a solid fibril-like aggregate of FUS-LC. The molecular mechanism of condensation/aggregation of proteins in response to surfaces of various charged states or levels of hydrophobicity remains to be better elucidated. Here, we provide initial insights into this question by investigating the stability of a small β fibril state of FUS-LC in bulk solution membrane- and air-water interfaces. We perform multiple independent molecular dynamics simulations with distinct starting conformations for each system to demonstrate the statistical significance of our findings. Our study demonstrates the stability of the FUS-LC fibril in the presence of anionic membranes on the μs timescale while the fibril falls apart in bulk solution. We observe that a zwitterionic membrane does not enhance the stability of the fibril and 1,2-dioleoyl--glycero-3-phospho-l-serine (DOPS) has a higher propensity to stabilize the fibril than dioleoylphosphatidylglycerol (DOPG), in qualitative agreement with experiments. We further show that the fibril becomes more stable at the air-water interface. We pinpoint interfacial solvation at the membrane- and air-water interfaces as a key factor that contributes to the stabilization of the peptide assembly.
生物分子的自组装可导致液滴、水凝胶和不可逆聚集体的形成,这些在生物学和疾病中具有重大意义。尽管对本体溶液中的生物分子凝聚进行了大量研究,但对于不同表面如何调节凝聚过程仍缺乏了解。在此背景下,最近的研究表明,与两性离子脂质膜不同,阴离子膜促进了肉瘤融合蛋白低复杂性结构域(FUS-LC)液滴的产生,尽管未表现出特定的蛋白质-脂质相互作用。此外,空气-水界面导致了FUS-LC的固态纤维状聚集体。蛋白质响应各种电荷状态或疏水性水平的表面而发生凝聚/聚集的分子机制仍有待更好地阐明。在这里,我们通过研究FUS-LC的小β纤维状态在本体溶液、膜和空气-水界面中的稳定性,为这个问题提供了初步见解。我们对每个系统进行了具有不同起始构象的多个独立分子动力学模拟,以证明我们发现的统计学意义。我们的研究表明,在微秒时间尺度上,FUS-LC纤维在阴离子膜存在下是稳定的,而在本体溶液中纤维会解体。我们观察到两性离子膜不会增强纤维的稳定性,并且1,2-二油酰-sn-甘油-3-磷酸-L-丝氨酸(DOPS)比二油酰磷脂酰甘油(DOPG)具有更高的稳定纤维的倾向,这与实验定性一致。我们进一步表明,纤维在空气-水界面处变得更稳定。我们指出膜和空气-水界面处的界面溶剂化是有助于肽组装稳定的关键因素。