Schindl Alexandra, Hagen M Lawrence, Cooley Isabel, Jäger Christof M, Warden Andrew C, Zelzer Mischa, Allers Thorsten, Croft Anna K
Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK.
School of Pharmacy, University of Nottingham, University Park Campus Nottingham NG7 2RD UK.
RSC Sustain. 2024 Jul 8;2(9):2559-2580. doi: 10.1039/d3su00412k. eCollection 2024 Aug 28.
Biocatalysis in ionic liquids enables novel routes for bioprocessing. Enzymes derived from extremophiles promise greater stability and activity under ionic liquid (IL) influence. Here, we probe the enzyme alcohol dehydrogenase 2 from the halophilic archaeon in thirteen different ion combinations for relative activity and analyse the results against molecular dynamics (MD) simulations of the same IL systems. We probe the ionic liquid property space based on ion polarizability and molecular electrostatic potential. Using the radial distribution functions, survival probabilities and spatial distribution functions of ions, we show that cooperative ion-ion interactions determine ion-protein interactions, and specifically, strong ion-ion interactions equate to higher enzymatic activity if neither of the ions interact strongly with the protein surface. We further demonstrate a tendency for cations interacting with the protein surface to be least detrimental to enzymatic activity if they show a low polarizability when combined with small hydrophilic anions. We also find that the IL ion influence is not mitigated by the surplus of negatively charged residues of the halophilic enzyme. This is shown by free energy landscape analysis in root mean square deviation and distance variation plots of active site gating residues (Trp43 and His273) demonstrating no protection of specific structural elements relevant to preserving enzymatic activity. On the other hand, we observe a general effect across all IL systems that a tight binding of water at acidic residues is preferentially interrupted at these residues through the increased presence of potassium ions. Overall, this study demonstrates a co-ion interaction dependent influence on allosteric surface residues controlling the active/inactive conformation of halophilic alcohol dehydrogenase 2 and the necessity to engineer ionic liquid systems for enzymes that rely on the integrity of functional surface residues regardless of their halophilicity or thermophilicity for use in bioprocessing.
离子液体中的生物催化为生物加工开辟了新途径。来自极端微生物的酶有望在离子液体(IL)的影响下具有更高的稳定性和活性。在此,我们研究了嗜盐古菌中的乙醇脱氢酶2在13种不同离子组合中的相对活性,并根据相同离子液体系统的分子动力学(MD)模拟分析结果。我们基于离子极化率和分子静电势探索离子液体的性质空间。通过离子的径向分布函数、存活概率和空间分布函数,我们表明离子间的协同相互作用决定了离子与蛋白质的相互作用,具体而言,如果两种离子都不与蛋白质表面强烈相互作用,那么强离子间相互作用等同于更高的酶活性。我们进一步证明,如果阳离子与小的亲水性阴离子结合时极化率较低,那么与蛋白质表面相互作用的阳离子对酶活性的损害最小。我们还发现,嗜盐酶带负电荷残基的过剩并不能减轻离子液体离子的影响。活性位点门控残基(Trp43和His273)的均方根偏差和距离变化图中的自由能景观分析表明,与保持酶活性相关的特定结构元件没有得到保护,这证明了这一点。另一方面,我们在所有离子液体系统中都观察到一种普遍效应,即酸性残基处紧密结合的水会因钾离子的增加而优先在这些残基处被打断。总体而言,本研究表明共离子相互作用对控制嗜盐乙醇脱氢酶2活性/非活性构象的变构表面残基有依赖性影响,并且有必要为依赖功能性表面残基完整性的酶设计离子液体系统,无论其嗜盐性或嗜热性如何,以便用于生物加工。