Gallifant Jack, Afshar Majid, Ameen Saleem, Aphinyanaphongs Yindalon, Chen Shan, Cacciamani Giovanni, Demner-Fushman Dina, Dligach Dmitriy, Daneshjou Roxana, Fernandes Chrystinne, Hansen Lasse Hyldig, Landman Adam, Lehmann Lisa, McCoy Liam G, Miller Timothy, Moreno Amy, Munch Nikolaj, Restrepo David, Savova Guergana, Umeton Renato, Gichoya Judy Wawira, Collins Gary S, Moons Karel G M, Celi Leo A, Bitterman Danielle S
medRxiv. 2024 Jul 25:2024.07.24.24310930. doi: 10.1101/2024.07.24.24310930.
Large Language Models (LLMs) are rapidly being adopted in healthcare, necessitating standardized reporting guidelines. We present TRIPOD-LLM, an extension of the TRIPOD+AI statement, addressing the unique challenges of LLMs in biomedical applications. TRIPOD-LLM provides a comprehensive checklist of 19 main items and 50 subitems, covering key aspects from title to discussion. The guidelines introduce a modular format accommodating various LLM research designs and tasks, with 14 main items and 32 subitems applicable across all categories. Developed through an expedited Delphi process and expert consensus, TRIPOD-LLM emphasizes transparency, human oversight, and task-specific performance reporting. We also introduce an interactive website ( https://tripod-llm.vercel.app/ ) facilitating easy guideline completion and PDF generation for submission. As a living document, TRIPOD-LLM will evolve with the field, aiming to enhance the quality, reproducibility, and clinical applicability of LLM research in healthcare through comprehensive reporting.
DSB: Editorial, unrelated to this work: Associate Editor of Radiation Oncology, HemOnc.org (no financial compensation); Research funding, unrelated to this work: American Association for Cancer Research; Advisory and consulting, unrelated to this work: MercurialAI. DDF: Editorial, unrelated to this work: Associate Editor of JAMIA, Editorial Board of Scientific Data, Nature; Funding, unrelated to this work: the intramural research program at the U.S. National Library of Medicine, National Institutes of Health. JWG: Editorial, unrelated to this work: Editorial Board of Radiology: Artificial Intelligence, British Journal of Radiology AI journal and NEJM AI. All other authors declare no conflicts of interest.
大语言模型(LLMs)正在迅速被应用于医疗保健领域,这就需要标准化的报告指南。我们提出了TRIPOD-LLM,它是TRIPOD+AI声明的扩展,旨在应对大语言模型在生物医学应用中的独特挑战。TRIPOD-LLM提供了一份包含19个主要项目和50个子项目的全面清单,涵盖了从标题到讨论的关键方面。这些指南引入了一种模块化格式,适用于各种大语言模型研究设计和任务,其中14个主要项目和32个子项目适用于所有类别。通过快速德尔菲法和专家共识制定,TRIPOD-LLM强调透明度、人工监督和特定任务的性能报告。我们还推出了一个交互式网站(https://tripod-llm.vercel.app/),便于轻松完成指南并生成可提交的PDF。作为一份动态文件,TRIPOD-LLM将随着该领域的发展而演变,旨在通过全面报告提高医疗保健领域大语言模型研究的质量、可重复性和临床适用性。
DSB:编辑工作,与本研究无关:放射肿瘤学副主编,HemOnc.org(无经济报酬);研究资金,与本研究无关:美国癌症研究协会;咨询工作,与本研究无关:MercurialAI。DDF:编辑工作,与本研究无关:《美国医学信息学会杂志》副主编、《科学数据》编辑委员会、《自然》杂志;资金,与本研究无关:美国国立医学图书馆、美国国立卫生研究院的内部研究项目。JWG:编辑工作,与本研究无关:《放射学:人工智能》编辑委员会、《英国放射学杂志人工智能》期刊和《新英格兰医学杂志人工智能》。所有其他作者均声明无利益冲突。