Mahootiha Maryamalsadat, Tak Divyanshu, Ye Zezhong, Zapaishchykova Anna, Likitlersuang Jirapat, Climent Pardo Juan Carlos, Boyd Aidan, Vajapeyam Sridhar, Chopra Rishi, Prabhu Sanjay P, Liu Kevin X, Elhalawani Hesham, Nabavizadeh Ali, Familiar Ariana, Mueller Sabine, Aerts Hugo J W L, Bandopadhayay Pratiti, Ligon Keith L, Haas-Kogan Daphne, Poussaint Tina Y, Qadir Hemin Ali, Balasingham Ilangko, Kann Benjamin H
Faculty of Medicine, University of Oslo, Oslo, Norway.
The Intervention Centre, Oslo University Hospital, Oslo, Norway.
Neuro Oncol. 2025 Jan 12;27(1):277-290. doi: 10.1093/neuonc/noae173.
Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning (DL) of magnetic resonance imaging (MRI) tumor features could improve postoperative pLGG risk stratification.
We used a pretrained DL tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from 2 institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained 3 DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with (1) clinical features, (2) DL-MRI features, and (3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan-Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model.
Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, P < .0001).
DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.
小儿低级别胶质瘤(pLGG)术后复发风险难以通过传统的临床、影像学和基因组因素进行预测。我们研究了磁共振成像(MRI)肿瘤特征的深度学习(DL)是否能改善pLGG术后风险分层。
我们使用一个为pLGG分割设计的预训练DL工具,从接受手术患者的术前T2加权MRI中提取pLGG成像特征(DL-MRI特征)。患者来自2个机构:达纳-法伯/波士顿儿童医院(DF/BCH)和儿童脑肿瘤网络(CBTN)。我们训练了3个DL逻辑风险模型,以预测术后无事件生存(EFS)概率,分别使用(1)临床特征、(2)DL-MRI特征和(3)多模态(临床和DL-MRI特征)。我们使用时间依赖性一致性指数(Ctd)评估模型,并通过Kaplan-Meier曲线和对数秩检验进行风险组分层。我们开发了一个自动化流程,将pLGG分割和EFS预测与最佳模型相结合。
在分析的396例患者中(中位随访时间:85个月,范围:1.5 - 329个月),214例(54%)接受了全切手术,110例(28%)复发。与DL-MRI模型和临床模型相比,多模态模型改善了EFS预测(Ctd分别为:0.85(95%CI:0.81 - 0.93)、0.79(95%CI:0.70 - 0.88)和0.72(95%CI:0.57 - 0.77))。多模态模型改善了风险组分层(预测高危组的3年EFS为31%,低危组为92%,P <.0001)。
DL提取的成像特征可用于指导pLGG术后复发预测。多模态DL改善了pLGG术后风险分层,并可能指导术后决策。可能需要更大规模的多中心训练数据来提高模型的通用性。