Suppr超能文献

使用与深度学习模型相结合的特征诱导结构诊断进行深层结构水平的N-聚糖鉴定。

Deep structure-level N-glycan identification using feature-induced structure diagnosis integrated with a deep learning model.

作者信息

Qin Suideng, Tian Zhixin

机构信息

School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.

出版信息

Anal Bioanal Chem. 2025 Feb;417(5):1001-1014. doi: 10.1007/s00216-024-05505-4. Epub 2024 Aug 30.

Abstract

Being a widely occurring protein post-translational modification, N-glycosylation features unique multi-dimensional structures including sequence and linkage isomers. There have been successful bioinformatics efforts in N-glycan structure identification using N-glycoproteomics data; however, symmetric "mirror" branch isomers and linkage isomers are largely unresolved. Here, we report deep structure-level N-glycan identification using feature-induced structure diagnosis (FISD) integrated with a deep learning model. A neural network model is integrated to conduct the identification of featured N-glycan motifs and boosts the process of structure diagnosis and distinction for linkage isomers. By adopting publicly available N-glycoproteomics datasets of five mouse tissues (17,136 intact N-glycopeptide spectrum matches) and a consideration of 23 motif features, a deep learning model integrated with a convolutional autoencoder and a multilayer perceptron was trained to be capable of predicting N-glycan featured motifs in the MS/MS spectra with previously identified compositions. In the test of the trained model, a prediction accuracy of 0.8 and AUC value of 0.95 were achieved; 5701 previously unresolved N-glycan structures were assigned by matched structure-diagnostic ions; and by using an explainable learning algorithm, two new fragmentation features of m/z = 674.25 and m/z = 835.28 were found to be significant to three N-glycan structure motifs with fucose, NeuAc, and NeuGc, proving the capability of FISD to discover new features in the MS/MS spectra.

摘要

作为一种广泛存在的蛋白质翻译后修饰,N-糖基化具有独特的多维结构,包括序列异构体和连接异构体。利用N-糖蛋白质组学数据在N-聚糖结构鉴定方面已经取得了成功的生物信息学成果;然而,对称的“镜像”分支异构体和连接异构体在很大程度上尚未得到解决。在此,我们报告了使用特征诱导结构诊断(FISD)与深度学习模型相结合的深度结构水平N-聚糖鉴定方法。集成了神经网络模型来进行特征性N-聚糖基序的鉴定,并促进连接异构体的结构诊断和区分过程。通过采用五个小鼠组织的公开可用N-糖蛋白质组学数据集(17,136个完整的N-糖肽谱匹配)并考虑23个基序特征,训练了一个集成卷积自动编码器和多层感知器的深度学习模型,使其能够在具有先前确定组成的MS/MS谱中预测N-聚糖特征基序。在对训练模型的测试中,实现了0.8的预测准确率和0.95的AUC值;通过匹配的结构诊断离子分配了5701个先前未解析的N-聚糖结构;并且通过使用可解释的学习算法,发现m/z = 674.25和m/z = 835.28这两个新的碎裂特征对具有岩藻糖、NeuAc和NeuGc的三个N-聚糖结构基序具有重要意义,证明了FISD在MS/MS谱中发现新特征的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验