Suppr超能文献

基于压力感应垫的不同传感器密度的轻量级神经网络用于睡眠姿势分类。

Lightweight Neural Network for Sleep Posture Classification Using Pressure Sensing Mat at Various Sensor Densities.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3410-3421. doi: 10.1109/TNSRE.2024.3452431. Epub 2024 Sep 18.

Abstract

Recently, pressure-sensing mats have been widely used to capture static and dynamic pressure over sleep for posture recognition. Both a full-size mat with a low-density sensing array for figuring out the structure of the whole body and a miniature scale mat with a high-density sensing array for identifying the local characteristics around the chest have been investigated. However, both of the mat systems may face the challenge in the trade-off between the computational complexity (involving the size, density, etc. of the mat) and the performance of sleep posture recognition, where high performance may requires overcomplex computation and result in time latency in real-time sleep posture monitoring. In this paper, a lightweight neural network named ConcatNet, is proposed to realize sleep postures (supine, left, right, and prone) recognition in real time while maintaining a favorable performance. In ConcatNet, the inception module is proposed to extract the image features under multiple receptive fields, while the multi-layer feature fusion module is utilized to fuse deep and shallow features to enhance the model performance. To further improve the efficiency of the model, the depthwise convolution is adopoted. ConcatNet models in 3 different scales (ConcatNet-S, ConcatNet-M, and ConcatNet-L) are built to explore the impact of the sensor density on sleep posture recognition performance. Experimental results exhibit that ConcatNet-M corresponding to medium sensor density ( 16×16 ) achieved the best comprehensive performance, with short-term data cross-validation accuracy at 95.56% and overnight data testing accuracy at 94.68%. The model size is 7.91KB, FLOPs is 56.47K, and the inference time is only 0.38ms, which shows an outstanding performance of real-time sleep posture recognition with minimum consumption, indicating the potential to be deployed in mobile devices.

摘要

最近,压力感应垫已广泛用于捕捉睡眠时的静态和动态压力以进行姿势识别。研究了全尺寸垫(具有低密度感测阵列,用于确定整个身体的结构)和微型垫(具有高密度感测阵列,用于识别胸部周围的局部特征)。然而,这两种垫系统都可能面临在计算复杂度(涉及垫的大小、密度等)和睡眠姿势识别性能之间的权衡挑战,其中高性能可能需要过于复杂的计算,并导致实时睡眠姿势监测中的时间延迟。在本文中,提出了一种名为 ConcatNet 的轻量级神经网络,用于在保持良好性能的同时实时实现睡眠姿势(仰卧、左侧、右侧和俯卧)识别。在 ConcatNet 中,提出了 inception 模块以在多个感受野下提取图像特征,而多层特征融合模块则用于融合深度和浅层特征以提高模型性能。为了进一步提高模型的效率,采用了深度卷积。构建了 3 种不同规模的 ConcatNet 模型(ConcatNet-S、ConcatNet-M 和 ConcatNet-L),以探索传感器密度对睡眠姿势识别性能的影响。实验结果表明,对应中等传感器密度(16×16)的 ConcatNet-M 实现了最佳的综合性能,短期数据交叉验证准确率为 95.56%,夜间数据测试准确率为 94.68%。模型大小为 7.91KB,FLOPs 为 56.47K,推断时间仅为 0.38ms,这表明具有最小消耗的实时睡眠姿势识别具有出色的性能,表明有潜力部署在移动设备中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验