Suppr超能文献

时空卷积睡眠姿态检测网络:一种用于睡眠姿态检测的时空卷积网络。

STConvSleepNet: A Spatiotemporal Convolutional Network for Sleep Posture Detection.

作者信息

Hu Dikun, Gao Weidong, Ang Kai Keng, Hu Mengjiao, Chuai Gang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10781779.

Abstract

Sleep posture, intricately connected to sleep health, has emerged as a crucial focus in sleep medicine. Studies have associated the supine posture with increased frequency and severity of obstructive sleep apnea (OSA), while lateral postures may mitigate these effects. For bedridden patients, regular posture adjustments are essential to prevent ulcers and bedsores, highlighting the need for precise sleep posture detection. In this work, we propose STConvSleepNet, a novel method for detecting sleep posture using piezoelectric sensor pressure data. It employs two shallow CNN2D networks to discriminate spatial features and two CNN1D networks to discriminate temporal features, with each network processing either the heart rate or the respiratory rate. These networks are trained to detect sleep postures from spatial features of the pressure distribution, and temporal features of heart rate and cardiopulmonary activities variability. We collected data from 22 participants with 300-450 samples each, for a total of 8583 samples using a 32-sensor array. We performed 5-fold cross-validation on the data using the proposed method. The results showed that the proposed STConvSleepNet yielded 91.11% recall, 92.89% precision, and 92.39% accuracy. This is comparable to the state-of-the-art method that needs a significantly increased number of sensors to achieve slightly increased accuracy of 96.90%. Hence these results showed promise of using the proposed STConvSleepNet for cost-effective home sleep monitoring using portable devices.Clinical Relevance- This sleep posture detection potentially suits diverse populations for long-term, at home settings.

摘要

睡眠姿势与睡眠健康紧密相连,已成为睡眠医学的关键关注点。研究表明,仰卧姿势与阻塞性睡眠呼吸暂停(OSA)的频率增加和严重程度相关,而侧卧姿势可能减轻这些影响。对于卧床患者而言,定期调整姿势对于预防溃疡和褥疮至关重要,这凸显了精确睡眠姿势检测的必要性。在这项工作中,我们提出了STConvSleepNet,这是一种利用压电传感器压力数据检测睡眠姿势的新方法。它采用两个浅层CNN2D网络来区分空间特征,以及两个CNN1D网络来区分时间特征,每个网络分别处理心率或呼吸率。这些网络经过训练,可从压力分布的空间特征、心率的时间特征以及心肺活动变异性中检测睡眠姿势。我们从22名参与者那里收集了数据,每人有300 - 450个样本,使用32传感器阵列总共收集了8583个样本。我们使用所提出的方法对数据进行了5折交叉验证。结果表明,所提出 的STConvSleepNet召回率为91.11%,精确率为92.89%,准确率为92.39%。这与最先进的方法相当,后者需要显著增加传感器数量才能实现略高的96.90%的准确率。因此,这些结果表明使用所提出的STConvSleepNet通过便携式设备进行经济高效的家庭睡眠监测具有前景。临床相关性——这种睡眠姿势检测可能适用于不同人群的长期居家环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验