Suppr超能文献

通过将转录特征连通性与对接相结合来加速药物发现和重新定位。

Accelerating drug discovery and repurposing by combining transcriptional signature connectivity with docking.

机构信息

Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA.

Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA.

出版信息

Sci Adv. 2024 Aug 30;10(35):eadj3010. doi: 10.1126/sciadv.adj3010.

Abstract

We present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship (ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate compounds are first ranked in a target structure-independent manner, using chemical similarity to LINCS analogs that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored using docking simulations and machine learning-based consensus of the two approaches. Using extensive benchmarking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma and preterm birth-associated inflammation.

摘要

我们提出了一种称为连接增强结构活性关系(ceSAR)的药物发现计算方法。该方法建立在里程碑式的 LINCS 药物样分子和基因敲低转录特征文库的基础上,将化学信息学技术与特征一致性分析相结合,以连接小分子及其靶标,并进一步使用分子对接评估它们的生物物理兼容性。候选化合物首先以与 LINCS 类似物的化学相似性为基础,在不依赖于靶结构的情况下进行排名,这些类似物与靶基因敲低具有转录组一致性。然后使用对接模拟和基于机器学习的两种方法的共识对前几个候选化合物进行重新评分。通过广泛的基准测试,我们表明 ceSAR 大大降低了假阳性率,同时将运行时间缩短了多个数量级,并进一步使药物发现管道民主化。我们通过鉴定和实验验证 BCL2A1 的抑制剂进一步证明了 ceSAR 的实用性,BCL2A1 是黑色素瘤和早产相关炎症中重要的抗凋亡靶标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验