Zhao Xi-Guan, Zhao Yan-Xia, Liu Qing-Yu, He Sheng-Gui
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
J Phys Chem Lett. 2024 Sep 12;15(36):9167-9174. doi: 10.1021/acs.jpclett.4c01961. Epub 2024 Aug 30.
Dry reforming of methane (DRM) to syngas is an important route to co-convert CH and CO. However, the highly endothermic nature of DRM induces the thermocatalysis to commonly operate at high temperatures that inevitably causes coke deposition through pyrolysis of methane. Herein, benefiting from the mass spectrometric experiments complemented with quantum chemical calculations, we have discovered that the bimetallic oxide cluster RhCoO can mediate the co-conversion of CH and CO at room temperature giving rise to two free H molecules and two adsorbed CO molecules (CO). The only elementary step requiring the input of external energy (e.g., high temperature) is desorption of CO from the reaction intermediate RhCoOCO. The doping effect of Co has also been clarified that the Co could tune the charge distribution and orbital energy of the active metal Rh, enabling the enhancement of cluster reactivity toward C-H activation, which is essential to facilitating the DRM to syngas. This work not only underlines the importance of temperature control over elementary steps in practical thermocatalysis but also identifies a promising active species containing the late 3d transition metal to drive DRM to syngas. The findings could provide novel insights into design of bimetallic catalysts for co-conversion of CH and CO at low temperatures.
甲烷干重整(DRM)制合成气是共转化CH和CO的重要途径。然而,DRM的高度吸热性质导致热催化通常在高温下进行,这不可避免地会通过甲烷热解导致积碳。在此,受益于质谱实验与量子化学计算的互补,我们发现双金属氧化物簇RhCoO可以在室温下介导CH和CO的共转化,产生两个游离氢分子和两个吸附的CO分子(CO)。唯一需要输入外部能量(如高温)的基元步骤是CO从反应中间体RhCoOCO上的脱附。还阐明了Co的掺杂效应,即Co可以调节活性金属Rh的电荷分布和轨道能量,从而增强簇对C-H活化的反应性,这对于促进DRM制合成气至关重要。这项工作不仅强调了在实际热催化中控制基元步骤温度的重要性,还确定了一种有前景的含晚期3d过渡金属的活性物种来驱动DRM制合成气。这些发现可为低温下CH和CO共转化的双金属催化剂设计提供新的见解。