Jin Xing, Lv Zhe, Yao Lu, Gong Qihuang, Yang Qi-Fan
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, <a href="https://ror.org/02v51f717">Peking University</a>, Beijing 100871, China.
Collaborative Innovation Center of Extreme Optics, <a href="https://ror.org/03y3e3s17">Shanxi University</a>, 030006 Taiyuan, China.
Phys Rev Lett. 2024 Aug 16;133(7):073801. doi: 10.1103/PhysRevLett.133.073801.
Quantum-limited timing jitter of soliton microcombs has long been recognized as their fundamental noise limit. Here, we surpass such limit by utilizing dispersive wave dynamics in multimode microresonators. Through the viscous force provided by these dispersive waves, the quantum-limited timing jitter can be suppressed to a much lower level that forms the ultimate fundamental noise limit of soliton microcombs. Our findings enable coherence engineering of soliton microcombs in the quantum regime, providing critical guidelines for using soliton microcombs to synthesize ultralow-noise microwave and optical signals.
孤子微梳的量子极限定时抖动长期以来一直被认为是其基本噪声极限。在此,我们通过利用多模微谐振器中的色散波动力学超越了这一极限。通过这些色散波提供的粘性力,量子极限定时抖动可以被抑制到低得多的水平,这构成了孤子微梳的最终基本噪声极限。我们的发现实现了量子 regime 中孤子微梳的相干工程,为使用孤子微梳合成超低噪声微波和光信号提供了关键指导方针。 (注:原文中“quantum regime”直译为“量子 regime”,不太明确具体准确含义,可能需要结合更多背景知识理解。)