Suppr超能文献

硅表面的原子级薄二维 Kagome 平带

Atomically Thin Two-Dimensional Kagome Flat Band on the Silicon Surface.

作者信息

Lee Jae Hyuck, Kim Gwan Woo, Song Inkyung, Kim Yejin, Lee Yeonjae, Yoo Sung Jong, Cho Deok-Yong, Rhim Jun-Won, Jung Jongkeun, Kim Gunn, Kim Changyoung

机构信息

Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Republic of Korea.

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea.

出版信息

ACS Nano. 2024 Sep 17;18(37):25535-25541. doi: 10.1021/acsnano.4c05398. Epub 2024 Aug 30.

Abstract

In condensed matter physics, the Kagome lattice and its inherent flat bands have attracted considerable attention for their prediction and observation to host a variety of exotic physical phenomena. Despite extensive efforts to fabricate thin films of Kagome materials aimed at modulating flat bands through electrostatic gating or strain manipulation, progress has been limited. Here, we report the observation of a d-orbital hybridized Kagome-derived flat band in Ag/Si(111) as revealed by angle-resolved photoemission spectroscopy. Our findings indicate that silver atoms on a silicon substrate form an unconventional distorted breathing Kagome structure, where a delicate balance in the hopping parameters of the in-plane d-orbitals leads to destructive interference, resulting in double flat bands. The exact quantum destructive interference mechanism that forms the flat band is uncovered in a rigorous manner that has not been described before. These results illuminate the potential for integrating metal-semiconductor interfaces on semiconductor surfaces into Kagome physics, particularly in exploring the flat bands of ideal 2D Kagome systems.

摘要

在凝聚态物理中, Kagome晶格及其固有的平带因其有望承载各种奇异物理现象而备受关注。尽管人们为制备Kagome材料薄膜付出了巨大努力,旨在通过静电门控或应变操纵来调制平带,但进展有限。在此,我们报告了通过角分辨光电子能谱观察到Ag/Si(111)中由d轨道杂化的Kagome衍生平带。我们的研究结果表明,硅衬底上的银原子形成了一种非常规的扭曲呼吸Kagome结构,其中面内d轨道的跳跃参数之间的微妙平衡导致相消干涉,从而产生双平带。形成平带的确切量子相消干涉机制以一种前所未有的严谨方式被揭示。这些结果阐明了将半导体表面的金属 - 半导体界面整合到Kagome物理中的潜力,特别是在探索理想二维Kagome系统的平带方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验