Becht Janine M, Kohlleppel Hendrik, Schins Roel P F, Kämpfer Angela A M
IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany.
Chem Res Toxicol. 2024 Sep 16;37(9):1501-1514. doi: 10.1021/acs.chemrestox.4c00086. Epub 2024 Aug 30.
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, TiO), in the intestine. TiO has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of TiO in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated TiO in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine TiO induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, TiO induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following TiO exposure. Taken together, the effects of TiO strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO.
短链脂肪酸(SCFA)是结肠细胞的重要能量来源,也是肠道局部和全身重要的信使分子。丁酸盐是最突出且研究最充分的SCFA之一,已被证明具有抗炎作用、改善屏障完整性、增强肠道黏液合成,并在体外促进肠道上皮细胞的分化。虽然其生理相关性无可争议,但丁酸盐是否以及在何种程度上会影响肠道中异生物素(如食品级二氧化钛(E171,TiO₂))的作用仍不清楚。TiO₂因其潜在的DNA损伤作用一直备受争议,自2022年起在欧盟被禁止作为食品添加剂使用。首先,我们使用肠上皮细胞Caco-2单培养物来测试丁酸盐是否会影响TiO₂在原始状态下或在模拟胃和肠道pH条件下预处理后的细胞毒性和炎症潜能。然后,我们在处于稳态和炎症样状态的Caco-2、HT29-MTX-E12和THP-1细胞的肠道三联培养物中研究预处理后的TiO₂的细胞毒性、屏障完整性、细胞因子释放以及黏蛋白、氧化应激标志物和DNA修复的基因表达。在Caco-2单培养物中,丁酸盐具有矛盾的作用:预处理后的而非原始的TiO₂在Caco-2细胞中诱导细胞毒性,而在有丁酸盐存在时未观察到这种情况。相反,TiO₂在有丁酸盐存在时而非不存在时诱导白细胞介素8的释放。在先进的体外模型中,丁酸盐不影响健康或炎症状态的特征,并且在TiO₂暴露后对所研究的终点产生的影响可忽略不计。综上所述,TiO₂的作用强烈依赖于所采用的测试方法。我们的研究结果强调了实验设置的重要性,包括体外模型的选择和暴露场景的生理相关性,对于像TiO₂这样的食品级色素的危害测试而言。