Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
Neuropharmacology. 2024 Dec 1;260:110135. doi: 10.1016/j.neuropharm.2024.110135. Epub 2024 Aug 29.
Glutathione peroxidase-1 (GPx1) and cAMP/Ca responsive element (CRE)-binding protein (CREB) regulate neuronal viability by maintaining the redox homeostasis. Since GPx1 and CREB reciprocally regulate each other, it is likely that GPx1-CREB interaction may play a neuroprotective role against oxidative stress, which are largely unknown. Thus, we investigated the underlying mechanisms of the reciprocal regulation between GPx1 and CREB in the male rat hippocampus. Under physiological condition, L-buthionine sulfoximine (BSO)-induced oxidative stress increased GPx1 expression, extracellular signal-regulated kinase 1/2 (ERK1/2) activity and CREB serine (S) 133 phosphorylation in CA1 neurons, but not dentate granule cells (DGC), which were diminished by GPx1 siRNA, U0126 or CREB knockdown. GPx1 knockdown inhibited ERK1/2 and CREB activations induced by BSO. CREB knockdown also decreased the efficacy of BSO on ERK1/2 activation. BSO facilitated dynamin-related protein 1 (DRP1)-mediated mitochondrial fission in CA1 neurons, which abrogated by GPx1 knockdown and U0126. CREB knockdown blunted BSO-induced DRP1 upregulation without affecting DRP1 S616 phosphorylation ratio. Following status epilepticus (SE), GPx1 expression was reduced in CA1 neurons and DGC. SE also decreased CREB activity CA1 neurons, but not DGC. SE degenerated CA1 neurons, but not DGC, accompanied by mitochondrial elongation. These post-SE events were ameliorated by N-acetylcysteine (NAC, an antioxidant), but deteriorated by GPx1 knockdown. These findings indicate that a transient GPx1-ERK1/2-CREB activation may be a defense mechanism to protect hippocampal neurons against oxidative stress via maintenance of proper mitochondrial dynamics.
谷胱甘肽过氧化物酶 1(GPx1)和 cAMP/Ca 反应元件(CRE)结合蛋白(CREB)通过维持氧化还原稳态来调节神经元活力。由于 GPx1 和 CREB 相互调节,因此 GPx1-CREB 相互作用可能在对抗氧化应激方面发挥神经保护作用,但这在很大程度上尚不清楚。因此,我们研究了 GPx1 和 CREB 之间在雄性大鼠海马体中的相互调节的潜在机制。在生理条件下,L-丁硫氨酸亚砜(BSO)诱导的氧化应激增加了 CA1 神经元中 GPx1 的表达、细胞外信号调节激酶 1/2(ERK1/2)活性和 CREB 丝氨酸(S)133 磷酸化,但在齿状回颗粒细胞(DGC)中则没有,而 GPx1 siRNA、U0126 或 CREB 敲低则减弱了这些作用。GPx1 敲低抑制了 BSO 诱导的 ERK1/2 激活。CREB 敲低也降低了 BSO 对 ERK1/2 激活的作用。BSO 促进了 CA1 神经元中与 dynamin 相关蛋白 1(DRP1)介导的线粒体分裂,而 GPx1 敲低和 U0126 则阻止了这种作用。CREB 敲低减弱了 BSO 诱导的 DRP1 上调,而不影响 DRP1 S616 磷酸化比。癫痫发作后(SE),CA1 神经元和 DGC 中的 GPx1 表达减少。SE 还降低了 CA1 神经元中的 CREB 活性,但不影响 DGC。SE 使 CA1 神经元退化,但不影响 DGC,同时伴有线粒体伸长。这些 SE 后的事件被 N-乙酰半胱氨酸(NAC,一种抗氧化剂)改善,但被 GPx1 敲低恶化。这些发现表明,短暂的 GPx1-ERK1/2-CREB 激活可能是一种防御机制,通过维持适当的线粒体动力学来保护海马神经元免受氧化应激。