Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
Cell Death Dis. 2024 Sep 30;15(9):707. doi: 10.1038/s41419-024-07050-5.
Loss of parvalbumin (PV) expressing neurons (PV neurons) is relevant to the underlying mechanisms of the pathogenesis of neurological and psychiatric diseases associated with the dysregulation of neuronal excitatory networks and brain metabolism. Although PV modulates mitochondrial morphology, volume and dynamics, it is largely unknown whether mitochondrial dynamics affect PV expression and what the molecular events are responsible for PV neuronal degeneration. In the present study, L-buthionine sulfoximine (BSO, an inhibitor of glutathione synthesis) did not degenerate PV neurons under physiological condition. However, BSO-induced oxidative stress decreased PV expression and facilitated cyclin-dependent kinase 5 (CDK5) tyrosine (Y) 15 phosphorylation, dynamin-related protein 1 (DRP1)-mediated mitochondrial fission and glutathione peroxidase-1 (GPx1) downregulation in PV neurons. Co-treatment of roscovitine (a CDK5 inhibitor) or mitochondrial division inhibitor-1 (Mdivi-1, an inhibitor of mitochondrial fission) attenuated BSO-induced PV downregulation. WY14643 (an inducer of mitochondrial fission) reduced PV expression without affecting CDK5 Y15 phosphorylation. Following status epilepticus (SE), CDK5 Y15 phosphorylation and mitochondrial fission were augmented in PV neurons. These were accompanied by reduced GPx1-mediated inhibition of NF-κB p65 serine (S) 536 phosphorylation. N-acetylcysteine (NAC), roscovitine and Mdivi-1 ameliorated SE-induced PV neuronal degeneration by mitigating CDK5 Y15 hyperphosphorylation, aberrant mitochondrial fragmentation and reduced GPx1-mediated NF-κB inhibition. Furthermore, SN50 (a NF-κB inhibitor) alleviated SE-induced PV neuronal degeneration, independent of dysregulation of mitochondrial fission, CDK5 hyperactivation and GPx1 downregulation. These findings provide an evidence that oxidative stress may activate CDK5-DRP1- and GPx1-NF-κB-mediated signaling pathways, which would be possible therapeutic targets for preservation of PV neurons in various diseases.
钙结合蛋白(PV)表达神经元(PV 神经元)的丧失与神经和精神疾病发病机制的潜在机制有关,这些疾病与神经元兴奋性网络和大脑代谢的失调有关。尽管 PV 调节线粒体形态、体积和动力学,但线粒体动力学是否影响 PV 表达以及负责 PV 神经元变性的分子事件在很大程度上尚不清楚。在本研究中,L-丁硫氨酸亚砜胺(BSO,谷胱甘肽合成的抑制剂)在生理条件下不会使 PV 神经元变性。然而,BSO 诱导的氧化应激降低了 PV 的表达,并促进了周期蛋白依赖性激酶 5(CDK5)酪氨酸(Y)15 磷酸化、动力相关蛋白 1(DRP1)介导的线粒体分裂和谷胱甘肽过氧化物酶 1(GPx1)下调在 PV 神经元中。联合使用罗司替丁(CDK5 抑制剂)或线粒体分裂抑制剂-1(Mdivi-1,线粒体分裂抑制剂)可减轻 BSO 诱导的 PV 下调。WY14643(线粒体分裂诱导剂)降低了 PV 的表达,而不影响 CDK5 Y15 磷酸化。癫痫持续状态(SE)后,PV 神经元中的 CDK5 Y15 磷酸化和线粒体分裂增加。这伴随着 GPx1 介导的 NF-κB p65 丝氨酸(S)536 磷酸化抑制减少。N-乙酰半胱氨酸(NAC)、罗司替丁和 Mdivi-1 通过减轻 CDK5 Y15 过度磷酸化、异常线粒体碎片化和减少 GPx1 介导的 NF-κB 抑制,改善了 SE 诱导的 PV 神经元变性。此外,SN50(NF-κB 抑制剂)减轻了 SE 诱导的 PV 神经元变性,而与线粒体分裂、CDK5 过度激活和 GPx1 下调无关。这些发现提供了证据表明,氧化应激可能激活 CDK5-DRP1-和 GPx1-NF-κB 介导的信号通路,这可能是各种疾病中保护 PV 神经元的治疗靶点。