Suppr超能文献

通过光子-声子共驱动催化实现甲烷在Au-CeO上选择性氧化为含碳产物。

Selective oxidation of methane to C products over Au-CeO by photon-phonon co-driven catalysis.

作者信息

Wang Chao, Xu Youxun, Xiong Lunqiao, Li Xiyi, Chen Enqi, Miao Tina Jingyan, Zhang Tianyu, Lan Yang, Tang Junwang

机构信息

Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.

Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Nat Commun. 2024 Aug 30;15(1):7535. doi: 10.1038/s41467-024-51690-2.

Abstract

Direct methane conversion to high-value chemicals under mild conditions is attractive yet challenging due to the inertness of methane and the high reactivity of valuable products. This work presents an efficient and selective strategy to achieve direct methane conversion through the oxidative coupling of methane over a visible-responsive Au-loaded CeO by photon-phonon co-driven catalysis. A record-high ethane yield of 755 μmol h (15,100 μmol g h) and selectivity of 93% are achieved under optimised reaction conditions, corresponding to an apparent quantum efficiency of 12% at 365 nm. Moreover, the high activity of the photocatalyst can be maintained for at least 120 h without noticeable decay. The pre-treatment of the catalyst at relatively high temperatures introduces oxygen vacancies, which improves oxygen adsorption and activation. Furthermore, Au, serving as a hole acceptor, facilitates charge separation, inhibits overoxidation and promotes the C-C coupling reaction. All these enhance photon efficiency and product yield.

摘要

在温和条件下将甲烷直接转化为高价值化学品具有吸引力,但由于甲烷的惰性和有价值产物的高反应活性,这一过程具有挑战性。这项工作提出了一种高效且选择性的策略,通过在可见光响应的负载金的二氧化铈上,利用光子 - 声子协同驱动催化实现甲烷的氧化偶联,从而实现甲烷的直接转化。在优化的反应条件下,乙烷产率达到创纪录的755 μmol h(15,100 μmol g h),选择性为93%,在365 nm处对应的表观量子效率为12%。此外,光催化剂的高活性可保持至少120小时而无明显衰减。在相对较高温度下对催化剂进行预处理会引入氧空位,这改善了氧的吸附和活化。此外,作为空穴受体的金促进了电荷分离,抑制了过度氧化并促进了碳 - 碳偶联反应。所有这些都提高了光子效率和产物产率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8578/11364766/2238d7dc934b/41467_2024_51690_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验