Nasir Muhammad Salman, Zhao Ying, Ye Haotian, Li Jinglin, Wang Ping, Wang Ding, Wang Xinqiang, Song Jun, Huang Zhen, Zhou Baowen
Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC, H3A0C9, Canada.
Adv Sci (Weinh). 2025 Jul;12(25):e2501298. doi: 10.1002/advs.202501298. Epub 2025 Apr 17.
The exploration of a noble-metal-free photo-thermal-coupled catalytic architecture plays a vital role in solar-driven conversion of carbon dioxide (CO) into high-value fuels and chemicals. In this study, FeNiCrMnCo multicomponent alloy (MCA) is integrated with GaN nanowires (NW's) for photo-thermal-coupled catalytic CO methanation. The MCA/GaN NW's nanohybrid demonstrates a considerable methane production rate of 199 mmol∙g∙h with an impressive selectivity of 93% under white light irradiation of 3 W∙cm at 290 °C by external heating. The turnover number approaches 20,160 mole CH per mole of MCA over a continuous operation period of 120 h, showcasing remarkable stability. Mechanistic investigations reveal that the unique MCA provides a flexible platform for tailoring the electronic and catalytic properties to optimize the adsorption and activation of CO₂ and H₂, thus leading to efficient and selective CO₂ methanation. This study presents an industry-friendly architecture for photo-thermal-coupled CO hydrogenation into high-value fuels and chemicals by coupling a noble-metal-free multicomponent alloy with GaN NWs, paving the way for advancements in sustainable energy conversion through CO utilization.
探索无贵金属的光热耦合催化结构在太阳能驱动二氧化碳(CO₂)转化为高价值燃料和化学品过程中起着至关重要的作用。在本研究中,将铁镍铬锰钴多组分合金(MCA)与氮化镓纳米线(NW's)集成用于光热耦合催化CO₂甲烷化。在290°C下通过外部加热,在3 W∙cm²的白光照射下,MCA/GaN NW's纳米杂化物表现出可观的甲烷产率,为199 mmol∙g⁻¹∙h,选择性高达93%。在120小时的连续运行期间,每摩尔MCA的周转数接近20,160摩尔CH₄,显示出卓越的稳定性。机理研究表明,独特的MCA提供了一个灵活的平台,可用于调整电子和催化性能,以优化CO₂和H₂的吸附和活化,从而实现高效且选择性的CO₂甲烷化。本研究通过将无贵金属多组分合金与GaN NWs耦合,展示了一种对工业友好的结构,用于将光热耦合CO₂加氢转化为高价值燃料和化学品,为通过CO₂利用实现可持续能源转换的进展铺平了道路。