Fesquet Florian, Kronowetter Fabian, Renger Michael, Yam Wun Kwan, Gandorfer Simon, Inomata Kunihiro, Nakamura Yasunobu, Marx Achim, Gross Rudolf, Fedorov Kirill G
Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching, Germany.
Physics Department, School of Natural Sciences, Technical University of Munich, Garching, Germany.
Nat Commun. 2024 Aug 30;15(1):7544. doi: 10.1038/s41467-024-51421-7.
Security of modern classical data encryption often relies on computationally hard problems, which can be trivialized with the advent of quantum computers. A potential remedy for this is quantum communication which takes advantage of the laws of quantum physics to provide secure exchange of information. Here, quantum key distribution (QKD) represents a powerful tool, allowing for unconditionally secure quantum communication between remote parties. At the same time, microwave quantum communication is set to play an important role in future quantum networks because of its natural frequency compatibility with superconducting quantum processors and modern near-distance communication standards. To this end, we present an experimental realization of a continuous-variable QKD protocol based on propagating displaced squeezed microwave states. We use superconducting parametric devices for generation and single-shot quadrature detection of these states. We demonstrate unconditional security in our experimental microwave QKD setting. The security performance is shown to be improved by adding finite trusted noise on the preparation side. Our results indicate feasibility of secure microwave quantum communication with the currently available technology in both open-air (up to ~ 80 m) and cryogenic (over 1000 m) conditions.
现代经典数据加密的安全性通常依赖于计算上的难题,但随着量子计算机的出现,这些难题可能会变得微不足道。对此的一种潜在补救方法是量子通信,它利用量子物理定律来实现信息的安全交换。在此,量子密钥分发(QKD)是一种强大的工具,可实现远程方之间无条件安全的量子通信。同时,由于微波量子通信与超导量子处理器以及现代近距通信标准具有天然的频率兼容性,它在未来量子网络中将发挥重要作用。为此,我们展示了基于传播的位移压缩微波态的连续变量QKD协议的实验实现。我们使用超导参量器件来生成这些态并进行单次正交检测。我们在实验性微波QKD设置中证明了无条件安全性。通过在制备端添加有限的可信噪声,安全性能得到了提升。我们的结果表明,利用当前可用技术,在露天(高达约80米)和低温(超过1000米)条件下进行安全的微波量子通信是可行的。