Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse J-C, Gabureac M, Reuer K, Akin A, Royer B, Blais A, Wallraff A
Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland.
Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Phys Rev Lett. 2020 Dec 31;125(26):260502. doi: 10.1103/PhysRevLett.125.260502.
Superconducting circuits are a strong contender for realizing quantum computing systems and are also successfully used to study quantum optics and hybrid quantum systems. However, their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks spanning different cryogenic systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on demand with average transfer and target state fidelities of 85.8% and 79.5%, respectively, between the two nodes of this elementary network. Cryogenic microwave links provide an opportunity to scale up systems for quantum computing and create local area superconducting quantum communication networks over length scales of at least tens of meters.
超导电路是实现量子计算系统的有力竞争者,也成功用于研究量子光学和混合量子系统。然而,其低温工作温度以及目前缺乏保持相干性的微波到光学转换解决方案,阻碍了跨越不同低温系统或更大距离的超导量子网络的实现。在此,我们报告了一个低温波导的成功运行,该波导将位于两个稀释制冷机中的跨导量子比特相干地连接起来,两个制冷机之间的物理距离为5米。我们在这个基本网络的两个节点之间按需转移量子比特状态并生成纠缠,平均转移保真度和目标状态保真度分别为85.8%和79.5%。低温微波链路为扩大量子计算系统规模以及在至少几十米的长度尺度上创建局域超导量子通信网络提供了机会。