Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, P. R. China.
Nat Commun. 2024 Aug 30;15(1):7560. doi: 10.1038/s41467-024-51980-9.
Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.
由于传统药物开发的成功率低和周期长,临床倾向于应用组学技术来揭示患者水平的疾病特征和对治疗的个体化反应。然而,数据的异质性形式和目标的不均匀分布使得药物发现和精准医学成为一项艰巨的任务。本研究以三阴性乳腺癌 (TNBC) 的细胞焦亡治疗为例,通过对大型 TNBC 队列和药物数据库进行数据挖掘,建立了一个生物因子调控的神经网络,用于快速筛选和优化化合物细胞焦亡药物对。随后,使用米托蒽醌和藤黄酸的首选组合制备仿生纳米晶,用于合理的药物递送。在 TNBC 模型中揭示了所获得的纳米晶通过核糖体应激调节细胞焦亡基因和触发细胞焦亡级联免疫效应的独特机制。在这项工作中,基于靶标组学的智能化合物药物发现框架探索了一种创新的药物开发范例,重新利用现有药物并实现对难治性疾病的精确治疗。