Suppr超能文献

将黑色素瘤 31 基因表达谱检测与临床和病理特征相结合,可为前哨淋巴结阳性提供个体化的精确估计:一项独立的性能队列研究。

Integrating the melanoma 31-gene expression profile test with clinical and pathologic features can provide personalized precision estimates for sentinel lymph node positivity: an independent performance cohort.

机构信息

ChristianaCare Helen F. Graham Cancer Center & Research Institute, Newark, DE, USA.

Castle Biosciences, Friendswood, TX, USA.

出版信息

World J Surg Oncol. 2024 Aug 30;22(1):228. doi: 10.1186/s12957-024-03512-4.

Abstract

INTRODUCTION

Up to 88% of sentinel lymph node biopsies (SLNBs) are negative. The 31-gene expression profile (31-GEP) test can help identify patients with a low risk of SLN metastasis who can safely forego SLNB. The 31-GEP classifies patients as low (Class 1 A), intermediate (Class 1B/2A), or high risk (Class 2B) for recurrence, metastasis, and SLN positivity. The integrated 31-GEP (i31-GEP) combines the 31-GEP risk score with clinicopathologic features using a neural network algorithm to personalize SLN risk prediction.

METHODS

Patients from a single surgical center with 31-GEP results were included (n = 156). An i31-GEP risk prediction < 5% was considered low risk of SLN positivity. Chi-square was used to compare SLN positivity rates between groups.

RESULTS

Patients considered low risk by the i31-GEP had a 0% (0/30) SLN positivity rate compared to a 31.9% (30/94, p < 0.001) positivity rate in those with > 10% risk. Using the i31-GEP to guide SLNB decisions could have significantly reduced the number of unnecessary SLNBs by 19.2% (30/156, p < 0.001) for all patients and 33.0% (30/91, p < 0.001) for T1-T2 tumors. Patients with T1-T2 tumors and an i31-GEP-predicted SLN positivity risk > 10% had a similar SLN positivity rate (33.3%) as patients with T3-T4 tumors (31.3%).

CONCLUSION

The i31-GEP identified patients with < 5% risk of SLN positivity who could safely forego SLNB. Combining the 31-GEP with clinicopathologic features for a precise risk estimate can help guide risk-aligned patient care decisions for SLNB to reduce the number of unnecessary SLNBs and increase the SLNB positivity yield if the procedure is performed.

摘要

简介

多达 88%的前哨淋巴结活检 (SLNB) 为阴性。31 基因表达谱 (31-GEP) 检测可帮助识别 SLN 转移风险低的患者,使其能够安全地避免 SLNB。31-GEP 将患者分为复发、转移和 SLN 阳性的低风险 (Class 1A)、中风险 (Class 1B/2A) 或高风险 (Class 2B)。集成的 31-GEP (i31-GEP) 使用神经网络算法将 31-GEP 风险评分与临床病理特征相结合,对 SLN 风险进行个体化预测。

方法

纳入了来自一个单一手术中心的具有 31-GEP 结果的患者(n=156)。i31-GEP 预测的 SLN 阳性风险 < 5%被认为是 SLN 阳性的低风险。使用卡方检验比较各组的 SLN 阳性率。

结果

根据 i31-GEP 评估为低风险的患者 SLN 阳性率为 0%(0/30),而风险> 10%的患者 SLN 阳性率为 31.9%(30/94,p<0.001)。使用 i31-GEP 指导 SLNB 决策可使所有患者不必要的 SLNB 数量减少 19.2%(30/156,p<0.001),T1-T2 肿瘤患者减少 33.0%(30/91,p<0.001)。T1-T2 肿瘤且 i31-GEP 预测的 SLN 阳性风险> 10%的患者与 T3-T4 肿瘤患者的 SLN 阳性率(33.3%)相似(31.3%)。

结论

i31-GEP 识别出 SLN 阳性风险 < 5%的患者可安全避免 SLNB。将 31-GEP 与临床病理特征相结合进行精确风险评估,有助于指导 SLNB 的风险调整型患者护理决策,以减少不必要的 SLNB 数量,并在进行该操作时提高 SLNB 阳性率。

相似文献

本文引用的文献

3
Clinical Utility of Melanoma Sentinel Lymph Node Biopsy Nomograms.黑色素瘤前哨淋巴结活检列线图的临床应用
J Am Coll Surg. 2024 Jan 1;238(1):23-31. doi: 10.1097/XCS.0000000000000886. Epub 2023 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验